"거듭제곱의 합을 구하는 공식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
==개요==
 
==개요==
* 1부터 n까지의 k-거듭제곱의 합을 구하는 공식.
+
* 1부터 n까지의 r-거듭제곱의 합을 구하는 공식.
 
* [[베르누이 다항식]] $B_n(x)$ 또는 [[베르누이 수]] $B_n$를 사용하여 표현가능함
 
* [[베르누이 다항식]] $B_n(x)$ 또는 [[베르누이 수]] $B_n$를 사용하여 표현가능함
:<math>\sum_{k=1}^{n-1}k^r=\frac{1}{r+1}\left(B_{r+1}(n)-B_{r+1}(1)\right)=\sum_{j=1}^{r+1}\frac{\binom{r+1}{j} B_j}{r+1}n^j</math>
 
  
 
+
$$
 +
\sum_{k=1}^{n}k^r=
 +
\begin{cases}
 +
n, & \text{if $r=0$} \\
 +
\frac{1}{r+1}n^{r+1}+\frac{1}{2}n^{r}+\sum_{j=2}^{r}\frac{\binom{r+1}{j} B_j}{r+1}n^{r+1-j}, & \text{if $r\ge 1$} \\
 +
\end{cases}
 +
$$
  
 
==간단한 예==
 
==간단한 예==
 
+
* $\Sigma_{k=1}^{n} k^r$ 테이블
<math>1 + 2 + 3 + \cdots + n = {n(n+1) \over 2} = {n^2 + n \over 2}</math>
+
\begin{array}{c|c|c}
 
+
r & \ \text{factored} & \text{expanded} \\
<math>1^2 + 2^2 + 3^2 + \cdots + n^2 = {n(n+1)(2n+1) \over 6} = {2n^3 + 3n^2 + n \over 6}</math>
+
\hline
 
+
0 & n & n \\
<math>1^3 + 2^3 + 3^3 + \cdots + n^3 = \left({n^2 + n \over 2}\right)^2 = {n^4 + 2n^3 + n^2 \over 4}</math>
+
1 & \frac{1}{2} n (n+1) & \frac{n^2}{2}+\frac{n}{2} \\
 
+
2 & \frac{1}{6} n (n+1) (2 n+1) & \frac{n^3}{3}+\frac{n^2}{2}+\frac{n}{6} \\
<math>1^4 + 2^4 + 3^4 + \cdots + n^4 = {6n^5 + 15n^4 + 10n^3 - n \over 30}</math>
+
3 & \frac{1}{4} n^2 (n+1)^2 & \frac{n^4}{4}+\frac{n^3}{2}+\frac{n^2}{4} \\
 
+
4 & \frac{1}{30} n (n+1) (2 n+1) \left(3 n^2+3 n-1\right) & \frac{n^5}{5}+\frac{n^4}{2}+\frac{n^3}{3}-\frac{n}{30} \\
<math>1^5 + 2^5 + 3^5 + \cdots + n^5 = {2n^6 + 6n^5 + 5n^4 - n^2 \over 12}</math>
+
5 & \frac{1}{12} n^2 (n+1)^2 \left(2 n^2+2 n-1\right) & \frac{n^6}{6}+\frac{n^5}{2}+\frac{5 n^4}{12}-\frac{n^2}{12} \\
 
+
6 & \frac{1}{42} n (n+1) (2 n+1) \left(3 n^4+6 n^3-3 n+1\right) & \frac{n^7}{7}+\frac{n^6}{2}+\frac{n^5}{2}-\frac{n^3}{6}+\frac{n}{42} \\
<math>1^6 + 2^6 + 3^6 + \cdots + n^6 = {6n^7 + 21n^6 + 21n^5 -7n^3 + n \over 42}</math>
+
7 & \frac{1}{24} n^2 (n+1)^2 \left(3 n^4+6 n^3-n^2-4 n+2\right) & \frac{n^8}{8}+\frac{n^7}{2}+\frac{7 n^6}{12}-\frac{7 n^4}{24}+\frac{n^2}{12} \\
 +
8 & \frac{1}{90} n \left(10 n^8+45 n^7+60 n^6-42 n^4+20 n^2-3\right) & \frac{n^9}{9}+\frac{n^8}{2}+\frac{2 n^7}{3}-\frac{7 n^5}{15}+\frac{2 n^3}{9}-\frac{n}{30} \\
 +
9 & \frac{1}{20} n^2 (n+1)^2 \left(n^2+n-1\right) \left(2 n^4+4 n^3-n^2-3 n+3\right) & \frac{n^{10}}{10}+\frac{n^9}{2}+\frac{3 n^8}{4}-\frac{7 n^6}{10}+\frac{n^4}{2}-\frac{3 n^2}{20} \\
 +
\end{array}
  
 
 
 
 
42번째 줄: 50번째 줄:
 
===계차수열===
 
===계차수열===
 
* 베르누이 다항식에 대하여 다음이 성립한다
 
* 베르누이 다항식에 대하여 다음이 성립한다
:<math>\left(\Delta B_n\right)(x)=B_n(x+1)-B_n(x)=nx^{n-1}</math>
+
:<math>\left(\Delta B_n\right)(x)=B_n(x+1)-B_n(x)=nx^{n-1}\label{diff}</math>
  
  
69번째 줄: 77번째 줄:
  
 
이를 베르누이 다항식에 적용하면,
 
이를 베르누이 다항식에 적용하면,
:<math>\sum_{k=1}^{n}k^r=\frac{1}{r+1}\left(B_{r+1}(n+1)-B_{r+1}(1)\right)</math>
+
:<math>\sum_{k=1}^{n}k^r=\frac{1}{r+1}\left(B_{r+1}(n+1)-B_{r+1}(1)\right) \label{f1}</math>
 
을 얻는다.
 
을 얻는다.
 
+
\ref{diff}를 이용하여 \ref{f1}을 다시 쓰면,
 
 
 
 
 
 
 
 
==관련된 학부 과목과 미리 알고 있으면 좋은 것들==
 
 
 
 
 
 
 
 
 
  
==관련된 대학원 과목==
+
$$
 +
\begin{align}
 +
& {} \quad \sum_{k=1}^{n}k^r=\frac{1}{r+1}\left(B_{r+1}(n)-B_{r+1}(1)\right)+\delta_{0,r}n^r \\
 +
=
 +
\left(\sum_{j=0}^{r}\frac{\binom{r+1}{j} B_j}{r+1}n^{r+1-j}\right)+\delta_{0,r} n^r \\
 +
& =
 +
\frac{1}{r+1}n^{r+1}+\frac{1}{2}n^{r}+\sum_{j=2}^{r}\frac{\binom{r+1}{j} B_j}{r+1}n^{r+1-j} \quad \text{if $r\ge 1$}
 +
\end{align}
 +
$$
  
 
 
 
 
 
  
 
==관련된 항목들==
 
==관련된 항목들==
96번째 줄: 100번째 줄:
 
* Umbral calculus
 
* Umbral calculus
  
 
 
  
 
 
  
==관련도서==
+
==매스매티카 파일 및 계산 리소스==
 +
* https://docs.google.com/file/d/0B8XXo8Tve1cxc3pmaEo5RHlnd0E/edit
  
 
 
 
 
 
  
 
==위키링크==
 
==위키링크==
110번째 줄: 110번째 줄:
 
* http://en.wikipedia.org/wiki/Faulhaber%27s_formula
 
* http://en.wikipedia.org/wiki/Faulhaber%27s_formula
  
 
+
 
  
 
 
 
 

2012년 12월 25일 (화) 06:12 판

개요

$$ \sum_{k=1}^{n}k^r= \begin{cases} n, & \text{if $r=0$} \\ \frac{1}{r+1}n^{r+1}+\frac{1}{2}n^{r}+\sum_{j=2}^{r}\frac{\binom{r+1}{j} B_j}{r+1}n^{r+1-j}, & \text{if $r\ge 1$} \\ \end{cases} $$

간단한 예

  • $\Sigma_{k=1}^{n} k^r$ 테이블

\begin{array}{c|c|c} r & \ \text{factored} & \text{expanded} \\ \hline 0 & n & n \\ 1 & \frac{1}{2} n (n+1) & \frac{n^2}{2}+\frac{n}{2} \\ 2 & \frac{1}{6} n (n+1) (2 n+1) & \frac{n^3}{3}+\frac{n^2}{2}+\frac{n}{6} \\ 3 & \frac{1}{4} n^2 (n+1)^2 & \frac{n^4}{4}+\frac{n^3}{2}+\frac{n^2}{4} \\ 4 & \frac{1}{30} n (n+1) (2 n+1) \left(3 n^2+3 n-1\right) & \frac{n^5}{5}+\frac{n^4}{2}+\frac{n^3}{3}-\frac{n}{30} \\ 5 & \frac{1}{12} n^2 (n+1)^2 \left(2 n^2+2 n-1\right) & \frac{n^6}{6}+\frac{n^5}{2}+\frac{5 n^4}{12}-\frac{n^2}{12} \\ 6 & \frac{1}{42} n (n+1) (2 n+1) \left(3 n^4+6 n^3-3 n+1\right) & \frac{n^7}{7}+\frac{n^6}{2}+\frac{n^5}{2}-\frac{n^3}{6}+\frac{n}{42} \\ 7 & \frac{1}{24} n^2 (n+1)^2 \left(3 n^4+6 n^3-n^2-4 n+2\right) & \frac{n^8}{8}+\frac{n^7}{2}+\frac{7 n^6}{12}-\frac{7 n^4}{24}+\frac{n^2}{12} \\ 8 & \frac{1}{90} n \left(10 n^8+45 n^7+60 n^6-42 n^4+20 n^2-3\right) & \frac{n^9}{9}+\frac{n^8}{2}+\frac{2 n^7}{3}-\frac{7 n^5}{15}+\frac{2 n^3}{9}-\frac{n}{30} \\ 9 & \frac{1}{20} n^2 (n+1)^2 \left(n^2+n-1\right) \left(2 n^4+4 n^3-n^2-3 n+3\right) & \frac{n^{10}}{10}+\frac{n^9}{2}+\frac{3 n^8}{4}-\frac{7 n^6}{10}+\frac{n^4}{2}-\frac{3 n^2}{20} \\ \end{array}

 

 

베르누이 수

  • 베르누이 수의 생성함수는 다음과 같이 주어진다.
    \(\frac{t}{e^t-1}= \sum_{n=0}^\infty B_n\frac{t^n}{n!}\)
  • 처음 몇 베르누이 수는 다음과 같다.
    \(B_0=1\), \(B_1=-{1 \over 2}\), \(B_2={1\over 6}\), \(B_3=0\), \(B_4=-\frac{1}{30}\), \(B_5=0\), \(B_6=\frac{1}{42}\), \(B_8=-\frac{1}{30}\), \(B_{10}=\frac{5}{66}\), \(B_{12}=-\frac{691}{2730}\),\(B_{14}=\frac{7}{6}\)

 

 

베르누이 다항식

\[\frac{t e^{xt}}{e^t-1}= \sum_{n=0}^\infty B_n(x) \frac{t^n}{n!}\]

  • 베르누이 수 \(B_k\)와 이항계수를 이용하여 표현하면 다음과 같다

\[B_n(x)=\sum_{k=0}^n {n \choose k}B_k x^{n-k}\]


계차수열

  • 베르누이 다항식에 대하여 다음이 성립한다

\[\left(\Delta B_n\right)(x)=B_n(x+1)-B_n(x)=nx^{n-1}\label{diff}\]


\begin{array}{c|cc} {} & B_n(x) & \left(\Delta B_n\right)(x)=B_n(x+1)-B_n(x) \\ \hline 0 & 1 & 0 \\ 1 & x-\frac{1}{2} & 1 \\ 2 & x^2-x+\frac{1}{6} & 2 x \\ 3 & x^3-\frac{3 x^2}{2}+\frac{x}{2} & 3 x^2 \\ 4 & x^4-2 x^3+x^2-\frac{1}{30} & 4 x^3 \\ 5 & x^5-\frac{5 x^4}{2}+\frac{5 x^3}{3}-\frac{x}{6} & 5 x^4 \\ 6 & x^6-3 x^5+\frac{5 x^4}{2}-\frac{x^2}{2}+\frac{1}{42} & 6 x^5 \\ 7 & x^7-\frac{7 x^6}{2}+\frac{7 x^5}{2}-\frac{7 x^3}{6}+\frac{x}{6} & 7 x^6 \\ 8 & x^8-4 x^7+\frac{14 x^6}{3}-\frac{7 x^4}{3}+\frac{2 x^2}{3}-\frac{1}{30} & 8 x^7 \\ 9 & x^9-\frac{9 x^8}{2}+6 x^7-\frac{21 x^5}{5}+2 x^3-\frac{3 x}{10} & 9 x^8 \\ \end{array}



거듭제곱의 합

차분방정식(difference equation) 과 유한미적분학 (finite calculus)의 정리에 의하면, \(\Delta F=f\) 인 두 수열에 대하여 \[\sum_{k=a}^{b-1}f(k)=F(b)-F(a)\] 이 성립한다.

이를 베르누이 다항식에 적용하면, \[\sum_{k=1}^{n}k^r=\frac{1}{r+1}\left(B_{r+1}(n+1)-B_{r+1}(1)\right) \label{f1}\] 을 얻는다. \ref{diff}를 이용하여 \ref{f1}을 다시 쓰면,

$$ \begin{align} & {} \quad \sum_{k=1}^{n}k^r=\frac{1}{r+1}\left(B_{r+1}(n)-B_{r+1}(1)\right)+\delta_{0,r}n^r \\ & = \left(\sum_{j=0}^{r}\frac{\binom{r+1}{j} B_j}{r+1}n^{r+1-j}\right)+\delta_{0,r} n^r \\ & = \frac{1}{r+1}n^{r+1}+\frac{1}{2}n^{r}+\sum_{j=2}^{r}\frac{\binom{r+1}{j} B_j}{r+1}n^{r+1-j} \quad \text{if $r\ge 1$} \end{align} $$


관련된 항목들


매스매티카 파일 및 계산 리소스


위키링크


 

관련논문