리만 곡면론

수학노트
(리만곡면론에서 넘어옴)
둘러보기로 가기 검색하러 가기

개요

  • 19세기 수학의 중요한 성취
  • 복소 대수곡선론 ~ 리만곡면론
  • 학부의 복소함수론은 복소평면 \(\mathbb{C}\) 의 부분집합에서 전개
  • 더 일반적으로 리만곡면 위에서 복소함수론을 전개할 수 있음
  • 타원함수타원적분 이론의 발전에서 큰 영향
  • 수학과 학부에서 배우게 되는 표준적인 커리큘럼으로는 19세기부터 20세기 초까지의 복소해석학의 중요한 발전을 제대로 이해하기 어려움.


다루는 대상

  • 리만곡면
  • 리만곡면 위에 정의된 복소함수
  • 대수적함수체(algebraic function field)


주요 결과



메모

  • Eva Lübcke, On a property of Fermi curves of \(2\)-dimensional periodic Schrdinger operators, arXiv:1606.02833 [math-ph], June 09 2016, http://arxiv.org/abs/1606.02833

매스매티카 파일 및 계산 리소스


관련된 교과목


관련된 학부 과목과 미리 알고 있으면 좋은 것들


관련된 대학원 과목 또는 더 공부하면 좋은 것들

  • 대수기하학


관련도서


리뷰, 에세이, 강의노트


관련논문

  • Keßler, Enno, and Jürgen Tolksdorf. “The Functional of Super Riemann Surfaces -- a ‘Semi-Classical’ Survey.” arXiv:1511.05092 [math], November 16, 2015. http://arxiv.org/abs/1511.05092.
  • Bobenko, Alexander I., and Felix Günther. “Discrete Riemann Surfaces Based on Quadrilateral Cellular Decompositions.” arXiv:1511.00652 [math], November 2, 2015. http://arxiv.org/abs/1511.00652.
  • Frauendiener, J., and C. Klein. “Computational Approach to Compact Riemann Surfaces.” arXiv:1510.09063 [math-Ph, Physics:nlin], October 30, 2015. http://arxiv.org/abs/1510.09063.
  • Kranich, Stefan. “GPU-Based Visualization of Domain-Coloured Algebraic Riemann Surfaces.” arXiv:1507.04571 [cs, Math], July 16, 2015. http://arxiv.org/abs/1507.04571.