"슬레이터 2"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지를 개설하였습니다.)
 
 
(사용자 2명의 중간 판 17개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 +
==개요==
  
 +
*  항등식:<math>\prod_{n=1}^{\infty}(1+q^n)=\sum_{n=0}^{\infty}\frac{q^{n(n+1)/2}}{(q)_n}\sim \frac{1}{\sqrt{2}}\exp(\frac{\pi^2}{12t}+\frac{t}{24})</math>
 +
* [[베버(Weber) 모듈라 함수]] 의 하나:<math>\mathfrak{f}_2(\tau)=\sqrt{2}\frac{\eta(2\tau)}{\eta(\tau)}=\sqrt{2}q^{1/24} \prod_{n=1}^{\infty} (1+q^{n})=\sqrt{2}q^{1/24}\sum_{n\geq 0}\frac{q^{n(n+1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)}</math>
 +
 +
 +
 +
 +
 +
==항등식의 분류==
 +
 +
* [[슬레이터 목록 (Slater's list)]]
 +
*  E(3)
 +
 +
 +
 +
 +
 +
==켤레 베일리 쌍의 유도==
 +
 +
* [[q-가우스 합]] 에서 얻어진 다음 결과를 이용:<math>\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}</math>,  <math>\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}</math>:<math>\gamma_{n}=\sum_{r=0}^{\infty}\frac{\delta_{n+r}}{(x)_{r+2n}(q)_{r}}</math>
 +
*  위의 결과에 다음을 이용:<math>x=q^2, y=-q, z\to\infty</math>.
 +
*  켤레 베일리 쌍:<math>\delta_n=(-q)_{n}q^{\frac{n(n+1)}{2}}</math>:<math>\gamma_n=\frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}</math>
 +
 +
 +
 +
 +
 +
==베일리 쌍의 유도==
 +
 +
*  Use the following '''[Slater51] '''(4.1):<math>\sum_{r=0}^{n}\frac{(1-aq^{2r})(-1)^{r}q^{\frac{1}{2}(r^2+r)}(a)_{r}(c)_{r}(d)_{r}a^{r}}{(a)_{n+r+1}(q)_{n-r}(q)_{r}(aq/c)_{r}(aq/d)_{r}c^{r}d^{r}}=\frac{(aq/cd)_{n}}{(q)_{n}(aq/c)_{n}(aq/d)_{n}}</math>
 +
*  Specialize:<math>a=q,c=-q,d=\infty</math>
 +
*  Bailey pair:<math>\alpha_{0}=1</math>, <math>\alpha_{n}=(-1)^{n}q^{n^2}(1-q^{2n+1})/(1-q)</math>:<math>\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{\alpha_r}{(q^{2})_{n-r}(q)_{n+r}}=\frac{1}{(q)_{n}(-q)_{n}}</math>
 +
 +
 +
 +
 +
 +
==베일리 쌍==
 +
 +
<math>\delta_n=(-q)_{n}q^{\frac{n(n+1)}{2}}</math>
 +
 +
<math>\gamma_n=\frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}</math>
 +
 +
<math>\alpha_{n}=(-1)^{n}q^{n^2}(1-q^{2n+1})/(1-q)</math>
 +
 +
<math>\beta_n=\frac{1}{(q)_{n}(-q)_{n}}</math>
 +
 +
 +
 +
 +
 +
==q-series 항등식==
 +
 +
<math>\prod_{n=1}^{\infty}(1+q^n)=\sum_{n=0}^{\infty}\frac{q^{n(n+1)/2}}{(q)_n}\sim \frac{1}{\sqrt{2}}\exp(\frac{\pi^2}{12t}+\frac{t}{24})</math>
 +
 +
* [[베일리 쌍(Bailey pair)과 베일리 보조정리]]:<math>\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\beta_n\delta_{n}</math>:<math>\sum_{n=0}^{\infty}\beta_n\delta_{n}=\sum_{n=0}^{\infty}\frac{q^{\frac{n(n+1)}{2}}}{(q)_{n}}</math>:<math>\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\frac{(-q)_{\infty}}{(q)_{\infty}}\sum_{n=0}^{\infty}(-1)^{n}(q^{\frac{3n^2+n}{2}}-q^{\frac{3n^2+5n+2}{2}})=(-q)_{\infty}</math> ([[오일러의 오각수정리(pentagonal number theorem)]] 가 사용됨)
 +
 +
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 +
** http://www.research.att.com/~njas/sequences/?q=
 +
 +
 +
 +
 +
 +
==베테 타입 방정식 (cyclotomic equation)==
 +
 +
Let <math>\sum_{n=0}^{\infty}\frac{q^{n(an+b)/2}}{
 +
\prod_{j=1}^{r}(q^{c_j};q^{d_j})_n^{e_j}}=\sum_{N=0}^{\infty} a_N q^{N}</math>.
 +
 +
Then <math>\prod_{j=1}^{r}(1-x^{d_j})^{e_j}=x^a</math>  has a unique root <math>0<\mu<1</math>. We get
 +
 +
<math>\log^2 a_N \sim 4N\sum_{j=1}^{r}\frac{e_j}{d_j}L(1-\mu^{d_j})</math>
 +
 +
a=1,d=1,e=1
 +
 +
The equation  becomes <math>1-x=x</math>.
 +
 +
<math>4L(\frac{1}{2})=\frac{1}{2}(\frac{2}{3}\pi^2)=\frac{1}{3}\pi^2</math>
 +
 +
 +
 +
 +
 +
==다이로그 항등식==
 +
 +
<math>L(\frac{1}{2})=\frac{1}{12}\pi^2</math>
 +
[[분류:슬레이터 목록]]
 +
[[분류:q-급수]]

2020년 12월 28일 (월) 03:39 기준 최신판

개요

  • 항등식\[\prod_{n=1}^{\infty}(1+q^n)=\sum_{n=0}^{\infty}\frac{q^{n(n+1)/2}}{(q)_n}\sim \frac{1}{\sqrt{2}}\exp(\frac{\pi^2}{12t}+\frac{t}{24})\]
  • 베버(Weber) 모듈라 함수 의 하나\[\mathfrak{f}_2(\tau)=\sqrt{2}\frac{\eta(2\tau)}{\eta(\tau)}=\sqrt{2}q^{1/24} \prod_{n=1}^{\infty} (1+q^{n})=\sqrt{2}q^{1/24}\sum_{n\geq 0}\frac{q^{n(n+1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)}\]



항등식의 분류



켤레 베일리 쌍의 유도

  • q-가우스 합 에서 얻어진 다음 결과를 이용\[\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}\], \(\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\)\[\gamma_{n}=\sum_{r=0}^{\infty}\frac{\delta_{n+r}}{(x)_{r+2n}(q)_{r}}\]
  • 위의 결과에 다음을 이용\[x=q^2, y=-q, z\to\infty\].
  • 켤레 베일리 쌍\[\delta_n=(-q)_{n}q^{\frac{n(n+1)}{2}}\]\[\gamma_n=\frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}\]



베일리 쌍의 유도

  • Use the following [Slater51] (4.1)\[\sum_{r=0}^{n}\frac{(1-aq^{2r})(-1)^{r}q^{\frac{1}{2}(r^2+r)}(a)_{r}(c)_{r}(d)_{r}a^{r}}{(a)_{n+r+1}(q)_{n-r}(q)_{r}(aq/c)_{r}(aq/d)_{r}c^{r}d^{r}}=\frac{(aq/cd)_{n}}{(q)_{n}(aq/c)_{n}(aq/d)_{n}}\]
  • Specialize\[a=q,c=-q,d=\infty\]
  • Bailey pair\[\alpha_{0}=1\], \(\alpha_{n}=(-1)^{n}q^{n^2}(1-q^{2n+1})/(1-q)\)\[\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{\alpha_r}{(q^{2})_{n-r}(q)_{n+r}}=\frac{1}{(q)_{n}(-q)_{n}}\]



베일리 쌍

\(\delta_n=(-q)_{n}q^{\frac{n(n+1)}{2}}\)

\(\gamma_n=\frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}\)

\(\alpha_{n}=(-1)^{n}q^{n^2}(1-q^{2n+1})/(1-q)\)

\(\beta_n=\frac{1}{(q)_{n}(-q)_{n}}\)



q-series 항등식

\(\prod_{n=1}^{\infty}(1+q^n)=\sum_{n=0}^{\infty}\frac{q^{n(n+1)/2}}{(q)_n}\sim \frac{1}{\sqrt{2}}\exp(\frac{\pi^2}{12t}+\frac{t}{24})\)



베테 타입 방정식 (cyclotomic equation)

Let \(\sum_{n=0}^{\infty}\frac{q^{n(an+b)/2}}{ \prod_{j=1}^{r}(q^{c_j};q^{d_j})_n^{e_j}}=\sum_{N=0}^{\infty} a_N q^{N}\).

Then \(\prod_{j=1}^{r}(1-x^{d_j})^{e_j}=x^a\) has a unique root \(0<\mu<1\). We get

\(\log^2 a_N \sim 4N\sum_{j=1}^{r}\frac{e_j}{d_j}L(1-\mu^{d_j})\)

a=1,d=1,e=1

The equation becomes \(1-x=x\).

\(4L(\frac{1}{2})=\frac{1}{2}(\frac{2}{3}\pi^2)=\frac{1}{3}\pi^2\)



다이로그 항등식

\(L(\frac{1}{2})=\frac{1}{12}\pi^2\)