"리대수 sl(2,C)의 유한차원 표현론"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
8번째 줄: 8번째 줄:
 
* 3차원 리대수 :<math>E=\begin{pmatrix} 0&1\\ 0&0 \end{pmatrix}</math> :<math>F=\begin{pmatrix} 0&0\\ 1&0 \end{pmatrix}</math> :<math>H=\begin{pmatrix} 1&0\\ 0&-1 \end{pmatrix}</math>
 
* 3차원 리대수 :<math>E=\begin{pmatrix} 0&1\\ 0&0 \end{pmatrix}</math> :<math>F=\begin{pmatrix} 0&0\\ 1&0 \end{pmatrix}</math> :<math>H=\begin{pmatrix} 1&0\\ 0&-1 \end{pmatrix}</math>
 
* <math>L=\langle E,F,H \rangle</math>
 
* <math>L=\langle E,F,H \rangle</math>
* commutator:<math>[E,F]=H</math>:<math>[H,E]=2E</math>:<math>[H,F]=-2F</math>
+
* commutator:<math>[E,F]=H</math>:<math>[H,E]=2E</math>:<math>[H,F]=-2F</math>
 +
* 카르탄 행렬 <math>\mathbf{A} = \begin{pmatrix} 2 \end{pmatrix}</math>
 +
* 루트 시스템 <math>\Phi=\{\alpha,-\alpha\}</math>
 
* universal enveloping algebra의 PBW 기저 <math>\{F^kH^lE^m|k,l,m\geq 0\}</math>
 
* universal enveloping algebra의 PBW 기저 <math>\{F^kH^lE^m|k,l,m\geq 0\}</math>
 
   
 
   
21번째 줄: 23번째 줄:
 
* <math>\{v_j|j\geq 0\}</math> 가 생성하는 벡터공간이 유한차원인 L-모듈이 되려면, <math>\lambda\in\mathbb{Z}, \lambda\geq 0</math> 이 만족되어야 한다
 
* <math>\{v_j|j\geq 0\}</math> 가 생성하는 벡터공간이 유한차원인 L-모듈이 되려면, <math>\lambda\in\mathbb{Z}, \lambda\geq 0</math> 이 만족되어야 한다
  
 
  
 
  
 
==유한차원 기약표현의 분류==
 
==유한차원 기약표현의 분류==
29번째 줄: 29번째 줄:
 
* 각 <math>m\geq 0</math> 에 대하여, m+1 차원 기약표현 <math>V(m)</math>가 존재한다
 
* 각 <math>m\geq 0</math> 에 대하여, m+1 차원 기약표현 <math>V(m)</math>가 존재한다
 
* 모든 유한차원 기약표현 <math>V</math>에 대하여 적당한 <math>m\geq 0</math>에 대하여 <math>V\simeq V(m)</math>
 
* 모든 유한차원 기약표현 <math>V</math>에 대하여 적당한 <math>m\geq 0</math>에 대하여 <math>V\simeq V(m)</math>
* $V(m)$이 이루는 환의 구조에 대해서는 [[클렙시-고단 법칙 (Clebsch-Gordan rule)]] 항목 참조
+
* $V(m)$으로 생성되는 환의 구조에 대해서는 [[클렙시-고단 법칙 (Clebsch-Gordan rule)]] 항목 참조
 +
 
 +
 
 +
===지표 (character)===
 +
* weight과 바일 벡터
 +
:<math>\omega=\frac{1}{2}\alpha, \rho=\omega</math>
 +
* 지표는 다음과 같다
 +
:<math>\operatorname{ch}V(k)=\frac{e^{(k+1)\omega}-e^{-(k+1)\omega}}{e^{\omega}-e^{-\omega}}=e^{k\omega}+e^{(k-2)\omega}+\cdots+e^{-k\omega}</math>
 +
* [[바일 지표 공식 (Weyl character formula)]]
 +
* 고유치가 $e^{i\theta}, e^{-i\theta}$인 $SU(2)$의 원소에서 지표의 값은 제2종 [[체비셰프 다항식]]으로 표현할 수 있다
 +
:<math>\frac{e^{i(k+1)\theta}-e^{-i(k+1)\theta}}{e^{i\theta}-e^{-i\theta}}= \frac{\sin (k+1)\theta}{\sin \theta}=U_k(\cos\theta)</math>
  
 
   
 
   

2013년 12월 14일 (토) 15:48 판

개요

  • 리대수 \(\mathfrak{sl}(2)\)의 유한차원 표현론
  • 각 \(m\geq 0\) 에 대하여, m+1 차원 기약표현 \(V(m)\)가 존재하며, 모든 유한차원 기약표현이 이러한 형태로 얻어진다


리대수 \(\mathfrak{sl}(2)\)

  • 3차원 리대수 \[E=\begin{pmatrix} 0&1\\ 0&0 \end{pmatrix}\] \[F=\begin{pmatrix} 0&0\\ 1&0 \end{pmatrix}\] \[H=\begin{pmatrix} 1&0\\ 0&-1 \end{pmatrix}\]
  • \(L=\langle E,F,H \rangle\)
  • commutator\[[E,F]=H\]\[[H,E]=2E\]\[[H,F]=-2F\]
  • 카르탄 행렬 \(\mathbf{A} = \begin{pmatrix} 2 \end{pmatrix}\)
  • 루트 시스템 \(\Phi=\{\alpha,-\alpha\}\)
  • universal enveloping algebra의 PBW 기저 \(\{F^kH^lE^m|k,l,m\geq 0\}\)


highest weight representation

  • \(\mathbb{F}\) : algebraically closed field with characteristic 0
  • \(V\) :유한차원인 기약표현
  • \(V=\oplus_{\lambda\in\mathbb{F}}V_{\lambda}\), \(V_{\lambda}=\{v\in V|Hv=\lambda v\}\)
  • \(\lambda\in \mathbb{F}\) 에 대하여, highest weight vector \(v_0\) 를 정의\[Ev_0=0\]\[Hv_0=\lambda v_0\]
  • \(v_j:=\frac{F^j}{j!}v_0\) 로 정의하면, 다음 관계가 만족된다\[H v_j=(\lambda -2j)v_j\]\[F v_j=(j+1)v_{j+1}\]\[E v_j=(\lambda -j+1)v_{j-1}\]
  • \(\{v_j|j\geq 0\}\) 가 생성하는 벡터공간이 유한차원인 L-모듈이 되려면, \(\lambda\in\mathbb{Z}, \lambda\geq 0\) 이 만족되어야 한다


유한차원 기약표현의 분류

  • 각 \(m\geq 0\) 에 대하여, m+1 차원 기약표현 \(V(m)\)가 존재한다
  • 모든 유한차원 기약표현 \(V\)에 대하여 적당한 \(m\geq 0\)에 대하여 \(V\simeq V(m)\)
  • $V(m)$으로 생성되는 환의 구조에 대해서는 클렙시-고단 법칙 (Clebsch-Gordan rule) 항목 참조


지표 (character)

  • weight과 바일 벡터

\[\omega=\frac{1}{2}\alpha, \rho=\omega\]

  • 지표는 다음과 같다

\[\operatorname{ch}V(k)=\frac{e^{(k+1)\omega}-e^{-(k+1)\omega}}{e^{\omega}-e^{-\omega}}=e^{k\omega}+e^{(k-2)\omega}+\cdots+e^{-k\omega}\]

\[\frac{e^{i(k+1)\theta}-e^{-i(k+1)\theta}}{e^{i\theta}-e^{-i\theta}}= \frac{\sin (k+1)\theta}{\sin \theta}=U_k(\cos\theta)\]


파울리 행렬

  • 파울리 행렬의 선형결합으로 리대수 $\mathfrak{sl}(2)$ 의 원소를 표현할 수 있으며, 특별히 생성원 $E,F$는 raising and lowering 연산자로 불리며 다음과 같이 표현된다 $$H=\sigma_{z}=\begin{pmatrix} 1&0\\ 0&-1 \end{pmatrix}$$ $$E=\sigma_{+}=\frac{1}{2}(\sigma_{x}+ i\sigma_{y})=\begin{pmatrix} 0&1\\ 0&0 \end{pmatrix}$$ $$F=\sigma_{-}=\frac{1}{2}(\sigma_{x}- i\sigma_{y})=\begin{pmatrix} 0&0\\ 1&0 \end{pmatrix}$$ $$[\sigma_{z},\sigma_{\pm}]=\pm 2\sigma_{\pm}$$


역사



메모



관련된 항목들


매스매티카 파일 및 계산 리소스


사전 형태의 자료



리뷰논문, 에세이, 강의노트