# 슬레이터 1

둘러보기로 가기 검색하러 가기

## 켤레 베일리 쌍의 유도

• q-가우스 합 에서 얻어진 다음 결과를 이용$\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}$, $$\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}$$$\gamma_{n}=\sum_{r=0}^{\infty}\frac{\delta_{n+r}}{(x)_{r+2n}(q)_{r}}$
• Specialize$x=q, y\to\infty, z\to\infty$.
• Bailey pair$\delta_n=q^{n^2}$$\gamma_n=\frac{1}{(q)_{\infty}}q^{n^2}$$\gamma_L=\sum_{r=L}^{\infty}\frac{\delta_r}{(q)_{r-L}(aq)_{r+L}}=\sum_{r=0}^{\infty}\frac{\delta_{r+L}}{(q)_{r}(aq)_{r+2L}}$

## 베일리 쌍의 유도

• Use the following [Slater51] (4.1)$\sum_{r=0}^{n}\frac{(1-aq^{2r})(-1)^{r}q^{\frac{1}{2}(r^2+r)}(a)_{r}(c)_{r}(d)_{r}a^{r}}{(a)_{n+r+1}(q)_{n-r}(q)_{r}(aq/c)_{r}(aq/d)_{r}c^{r}d^{r}}=\frac{(aq/cd)_{n}}{(q)_{n}(aq/c)_{n}(aq/d)_{n}}$
• Specialize$a=1,c=0,d=\infty$
• Bailey pair$\alpha_{0}=1$, $$\alpha_{r}=(-1)^{r}(1+q^r)q^{\frac{1}{2}r(r-1)}$$$\beta_{0}=1$, $$\beta_{r}=0$$$\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{(-1)^{r}(1+q^r)q^{\frac{1}{2}r(r-1)}}{(q)_{n-r}(q)_{n+r}}=0$

## 베일리 쌍

• Bailey pairs$\delta_n=q^{n^2}$$\gamma_n=\frac{1}{(q)_{\infty}}q^{n^2}$$\alpha_{0}=1$, $$\alpha_{r}=(-1)^{r}(1+q^r)q^{\frac{1}{2}r(r-1)}$$$\beta_{0}=1$, $$\beta_{r}=0$$

## q-series 항등식

$$\prod_{n=1}^{\infty}(1-q^n)=1+\sum_{n=1}^{\infty}(-1)^{n}(q^{\frac{3 n^2-n}{2}}+q^{\frac{3 n^2+n}{2}})=\sum_{n=-\infty}^\infty(-1)^nq^{n(3n-1)/2}$$

• 베일리 쌍(Bailey pair)과 베일리 보조정리$\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\beta_n\delta_{n}$$\sum_{n=0}^{\infty}\beta_n\delta_{n}=1$$\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\frac{1}{(q)_{\infty}}(1+\sum_{n=1}^{\infty}(-1)^{n}(q^{\frac{3 n^2-n}{2}}+q^{\frac{3 n^2+n}{2}}))$