"오일러(1707-1783)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
5번째 줄: 5번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">간단한 소개</h5>
+
 
 +
 
 +
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
 +
 
 +
* 스위스의 수학자
 +
* 러시아와 독일에서 활동
  
 
 
 
 
  
 
 
 
 
 +
 +
<h5>바젤문제의 해결</h5>
 +
 +
* [[ζ(2)의 계산, 오일러와 바젤문제(완전제곱수의 역수들의 합)|오일러와 바젤문제(완전제곱수의 역수들의 합)]]
 +
 +
<math>\zeta(2)=\sum_{1}^{\infty}\frac{1}{n^2}=\frac{\pi^2}{6}</math>
  
 
 
 
 
  
<h5>정수론과 q-급수</h5>
+
<h5>q-급수</h5>
  
 
* [[자연수의 분할수(integer partitions)|분할수]]에 대한 연구<br><math>\sum_{n=0}^\infty p(n)q^n = \prod_{n=1}^\infty \frac {1}{1-q^n} \right = \prod_{n=1}^\infty (1-q^n)^{-1} =\sum_{n\geq 0}\frac{q^n}{(1-q)(1-q^2)\cdots(1-q^n)}</math><br>
 
* [[자연수의 분할수(integer partitions)|분할수]]에 대한 연구<br><math>\sum_{n=0}^\infty p(n)q^n = \prod_{n=1}^\infty \frac {1}{1-q^n} \right = \prod_{n=1}^\infty (1-q^n)^{-1} =\sum_{n\geq 0}\frac{q^n}{(1-q)(1-q^2)\cdots(1-q^n)}</math><br>
*  <br>[[오일러의 오각수정리(pentagonal number theorem)]]<br><math>\prod_{n=1}^\infty (1-x^n)=\sum_{k=-\infty}^\infty(-1)^kx^{k(3k-1)/2}</math><br>
+
* [[오일러의 오각수정리(pentagonal number theorem)]]<br><math>\prod_{n=1}^\infty (1-x^n)=\sum_{k=-\infty}^\infty(-1)^kx^{k(3k-1)/2}</math><br>
 
* [[q-초기하급수(q-hypergeometric series) (통합됨)|q-초기하급수(q-hypergeometric series)]]의 오일러곱<br><math>\prod_{n=0}^{\infty}(1+zq^n)=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n</math><br><math>\prod_{n=0}^{\infty}\frac{1}{1-zq^n}=\sum_{n\geq 0}\frac{1}{(1-q)(1-q^2)\cdots(1-q^n)} z^n</math><br>
 
* [[q-초기하급수(q-hypergeometric series) (통합됨)|q-초기하급수(q-hypergeometric series)]]의 오일러곱<br><math>\prod_{n=0}^{\infty}(1+zq^n)=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n</math><br><math>\prod_{n=0}^{\infty}\frac{1}{1-zq^n}=\sum_{n\geq 0}\frac{1}{(1-q)(1-q^2)\cdots(1-q^n)} z^n</math><br>
  
127번째 줄: 138번째 줄:
 
* [http://www.ams.org/bull/2007-44-04/S0273-0979-07-01180-9/ Euler's "De Partitio Numerorum"]<br>
 
* [http://www.ams.org/bull/2007-44-04/S0273-0979-07-01180-9/ Euler's "De Partitio Numerorum"]<br>
 
** George E. Andrews, Bull. Amer. Math. Soc. 44 (2007), 561-573. 
 
** George E. Andrews, Bull. Amer. Math. Soc. 44 (2007), 561-573. 
 +
*  Euler and his work on infinite series.<br>
 +
** Veeravalli S. Varadarajan
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://dx.doi.org/
 
* http://dx.doi.org/

2010년 1월 7일 (목) 07:58 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 스위스의 수학자
  • 러시아와 독일에서 활동

 

 

바젤문제의 해결

\(\zeta(2)=\sum_{1}^{\infty}\frac{1}{n^2}=\frac{\pi^2}{6}\)

 

q-급수
  • 분할수에 대한 연구
    \(\sum_{n=0}^\infty p(n)q^n = \prod_{n=1}^\infty \frac {1}{1-q^n} \right = \prod_{n=1}^\infty (1-q^n)^{-1} =\sum_{n\geq 0}\frac{q^n}{(1-q)(1-q^2)\cdots(1-q^n)}\)
  • 오일러의 오각수정리(pentagonal number theorem)
    \(\prod_{n=1}^\infty (1-x^n)=\sum_{k=-\infty}^\infty(-1)^kx^{k(3k-1)/2}\)
  • q-초기하급수(q-hypergeometric series)의 오일러곱
    \(\prod_{n=0}^{\infty}(1+zq^n)=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n\)
    \(\prod_{n=0}^{\infty}\frac{1}{1-zq^n}=\sum_{n\geq 0}\frac{1}{(1-q)(1-q^2)\cdots(1-q^n)} z^n\)

 

 

오일러와 타원적분
  • 타원적분의 덧셈공식
    \(p(x)=1+mx^2+nx^4\)일 때,
    \(\int_0^x{\frac{1}{\sqrt{p(x)}}}dx+\int_0^y{\frac{1}{\sqrt{p(x)}}}dx = \int_0^{B(x,y)}{\frac{1}{\sqrt{p(x)}}}dx\)
    여기서 \(B(x,y)=\frac{x\sqrt{p(y)}+y\sqrt{p(x)}}{1-nx^2y^2}\)

 

 

재미있는 사실

 

 

 

역사

 

 

메모

 

[/pages/4650555/attachments/2578089 500px-DDR-Briefmarke_Akademie_1950_1_Pf.JPG]

http://commons.wikimedia.org/wiki/File:DDR-Briefmarke_Akademie_1950_1_Pf.JPG

 

 

[/pages/4650555/attachments/2578075 euler.jpg]

German Democratic Republic 1983

http://en.wikipedia.org/wiki/File:Euler_GDR_stamp.jpg

 

 

관련된 항목들

 

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그