"제1종타원적분 K (complete elliptic integral of the first kind)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
54번째 줄: 54번째 줄:
 
   
 
   
  
+
==special values==
 
+
===예===
==special values of <math>K(k)</math>==
 
  
 
<math>K(0) = \frac{\pi}{2}</math>
 
<math>K(0) = \frac{\pi}{2}</math>
75번째 줄: 74번째 줄:
  
 
*  더 자세한 목록은 '''[Zucker77]''' 또는 '''[Borwein98] 참조'''
 
*  더 자세한 목록은 '''[Zucker77]''' 또는 '''[Borwein98] 참조'''
 
  
  
149번째 줄: 147번째 줄:
  
 
<math>K\left(3-2\sqrt{2}\right)=\frac{(2+\sqrt{2})\Gamma(\frac{1}{4})^2}{16\sqrt{\pi}}=1.58255\cdots</math>
 
<math>K\left(3-2\sqrt{2}\right)=\frac{(2+\sqrt{2})\Gamma(\frac{1}{4})^2}{16\sqrt{\pi}}=1.58255\cdots</math>
 +
 +
 +
===Chowla-셀베르그의 정리===
 +
;정리
 +
$k$에 대하여, 다음의 값 :<math>i\frac{K'}{K}(k):=i\frac{K(\sqrt{1-k^2})}{K(k)}</math> 이 <math>d_F</math>를 판별식으로 갖는 복소이차수체 <math>F=\mathbb{Q}(\sqrt{d_F})</math>의 원소일 때, [[제1종타원적분 K (complete elliptic integral of the first kind)|제1종타원적분 K]]에 대하여 다음이 성립한다
 +
:<math>{K}(k)=\lambda\sqrt{\pi}\left(\prod_{m=1}^{|d_F|}\Gamma(\frac{m}{|d_F|})^{\left(\frac{d_F}{m}\right)}\right)^{\frac{w_{F}}{4h_{F}}}</math> 여기서 <math>\lambda</math>는 적당한 [[대수적수론|대수적수]].
 +
* [[Chowla-셀베르그 공식]] 항목 참조
 +
  
  

2014년 1월 26일 (일) 01:48 판

개요

  • 제1종 완전타원적분

\[K(k) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^2 \sin^2\theta}}=\int_0^1\frac{1}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx\]

  • 타원곡선의 주기이다
  • \(k\)가 타원적분의 singular value 일때(타원적분의 singular value k), 일종타원적분의 값을 구하는 문제
    • 19세기부터 많이 연구된 타원 함수 이론의 고전적인 문제이며, complex multiplication 이론, 타원곡선의 periods 의 틀에서 이해할 수 있음
    • $K(k)$의 값을 감마함수의 값의 곱으로 표현
    • 아래에 몇가지 예가 제시


란덴변환

  • 다음 변환 공식을 타원적분에 대한 란덴 변환이라 함.

\[K(\frac{2\sqrt{k}}{1+k})=(1+k)K(k)\]

  • \(k'=\sqrt{1-k^2}\)라 두면

\[2K(\frac{1-k'}{1+k'})=(1+k')K(k)\]


초기하함수를 이용한 표현

\[K(k) =\frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;k^2)\] \[K(k) = \frac{\pi}{2}\sum_{n=0}^{\infty}\frac{(\frac{1}{2})_n(\frac{1}{2})_n}{n!(1)_n}k^{2n} = \frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;k^2)\]

(증명)

\[K(k) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^2 \sin^2\theta}} = \int_0^{\frac{\pi}{2}}\sum_{n=0}^{\infty}\frac{(\frac{1}{2})_n}{n!} k^{2n}\sin^{2n}\theta{d\theta} \]

\[\int_0^{\frac{\pi}{2}}\sin^{2n}\theta{d\theta}=\frac{\pi}{2}\frac{(\frac{1}{2})_n}{(1)_n}\] 이므로 (오일러 베타적분(베타함수) 항목 참조)

\[K(k) = \frac{\pi}{2}\sum_{n=0}^{\infty}\frac{(\frac{1}{2})_n(\frac{1}{2})_n}{n!(1)_n}k^{2n} = \frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;k^2)\]■


맴돌이군



singular values

  • 자연수 \(n \) 에 대하여, 다음을 만족시키는 \(k\)를 타원적분의 singular value 라 한다

\[\frac{K'}{K}(k):=\frac{K(\sqrt{1-k^2})}{K(k)}= \sqrt n \]

  • 타원적분 singular value k 항목 참조
  • 예\[\frac{K'}{K}(\frac{1}{\sqrt{2}})= 1\]\[\frac{K'}{K}(\sqrt{2}-1)= \sqrt{2}\]\[\frac{K'}{K}\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)= \sqrt{3}\]\[\frac{K'}{K}\left(3-2\sqrt{2}\right)= \sqrt{4}\]


special values

\(K(0) = \frac{\pi}{2}\)

\(K(1) = \infty\)

\(K(\frac{1}{\sqrt{2}})=\frac{1}{4}B(1/4,1/4)=\frac{\Gamma(\frac{1}{4})^2}{4\sqrt{\pi}}=1.8540746773\cdots\)

\(K(2\sqrt{2}-2)\)

\(K(\sqrt{2}-1)=\frac{\sqrt{\sqrt{2}+1}}{2^{13/4}}B(\frac{1}{8},\frac{3}{8})=\frac{\sqrt{\sqrt{2}+1}\Gamma(\frac{1}{8})\Gamma(\frac{3}{8})}{2^{13/4}\sqrt{\pi}}\)

\(K\left(\frac{\sqrt{6}+\sqrt{2}}{4}\right)=\frac{\sqrt[4]{3}\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{4\sqrt{\pi}}=2.768063\cdots\)

\(K\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{4\sqrt[4]{3}\sqrt{\pi}}=1.5981420\cdots\)

\(K\left(3-2\sqrt{2}\right)=\frac{(2+\sqrt{2})\Gamma(\frac{1}{4})^2}{16\sqrt{\pi}}=1.58255\cdots\)

  • 더 자세한 목록은 [Zucker77] 또는 [Borwein98] 참조


\(K(\frac{1}{\sqrt{2}})=\frac{\Gamma(\frac{1}{4})^2}{4\sqrt{\pi}}=1.8540746773\cdots\)


\(K(2\sqrt{2}-2)\)

증명

\(K(\frac{2\sqrt{k}}{1+k})=(1+k)K(k)\)



\(K(\sqrt{2}-1)=\frac{\sqrt{\sqrt{2}+1}\Gamma(\frac{1}{8})\Gamma(\frac{3}{8})}{2^{13/4}\sqrt{\pi}}\)

\(K\left(\frac{\sqrt{6}+\sqrt{2}}{4}\right)=\frac{\sqrt[4]{3}\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{4\sqrt{\pi}}=2.768063\cdots\)

증명

\(\cos \frac{\pi}{12}=\frac{\sqrt{6}+\sqrt{2}}{4}\), \(\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}\) 이므로 위에서 얻은 결과를 활용하면,

\(K\left(\frac{\sqrt{6}+\sqrt{2}}{4}\right)=\frac{1}{2}\int_{0}^{\infty} \frac{du}{\sqrt{u (u^2 - \sqrt{3}u + 1)}}\)

여기서 \(v=\sqrt{3}u-1\) 으로 치환하면, \(u(u^2 - \sqrt{3}u+ 1) = 3^{-3/2}(1 + v^3)\)

\(\int_{0}^{\infty} \frac{du}{\sqrt{u (u^2 - \sqrt{3}u + 1)}}=\sqrt[4]{3}\int_{-1}^{\infty} \frac{dv}{\sqrt{v^3+1}}=\sqrt[4]{3}(\int_{-1}^{0} \frac{dv}{\sqrt{v^3+1}}+\int_{0}^{\infty} \frac{dv}{\sqrt{v^3+1}})\)

\(=\sqrt[4]{3}(\int_{0}^{1} \frac{dv}{\sqrt{1-v^3}}+\int_{0}^{\infty} \frac{dv}{\sqrt{1+v^3}})=\frac{\sqrt[4]{3}\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{2\sqrt{\pi}}=5.536129\cdots\)

마지막에서 다음을 이용하였음. (이에 대한 증명은 오일러 베타적분 항목 참조)

\(\int_{0}^{1} \frac{dv}{\sqrt{1-v^3}}=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{6\sqrt{\pi}}\)

\(\int_{0}^{\infty} \frac{dv}{\sqrt{1+v^3}}=\frac{ \Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{3\sqrt{\pi }}\) ■

\(K\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{4\sqrt[4]{3}\sqrt{\pi}}=1.5981420\cdots\)

증명
  • \(\frac{K'}{K}\left(\frac{\sqrt{6}+\sqrt{2}}{4}\right)= \sqrt{3}\) 을 이용할 수도 있고, 다음과 같이 직접 증명도 가능 *

\(\cos \frac{5\pi}{12}=\frac{\sqrt{6}-\sqrt{2}}{4}\), \(\cos \frac{5\pi}{6}=-\frac{\sqrt{3}}{2}\) 이므로 위에서 얻은 결과를 활용하면,

\(K\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)=\frac{1}{2}\int_{0}^{\infty} \frac{du}{\sqrt{u (u^2 + \sqrt{3}u + 1)}}\)

여기서 \(v=\sqrt{3}u+1\) 으로 치환하면, \(u(u^2 + \sqrt{3}u+ 1) = 3^{-3/2}(v^3-1)\)

\(\int_{0}^{\infty} \frac{du}{\sqrt{u (u^2+ \sqrt{3}u + 1)}}=\sqrt[4]{3}\int_{1}^{\infty} \frac{dv}{\sqrt{v^3-1}}=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{2\sqrt[4]{3}\sqrt{\pi}}=3.1962840\cdots\)


\(K\left(3-2\sqrt{2}\right)=\frac{(2+\sqrt{2})\Gamma(\frac{1}{4})^2}{16\sqrt{\pi}}=1.58255\cdots\)

증명

란덴변환을 이용 \[K(\frac{2\sqrt{k}}{1+k})=(1+k)K(k)\] 여기서 \(k=3-2\sqrt{2}\)라 두면, \[\frac{2\sqrt{k}}{1+k}=\frac{1}{\sqrt{2}}\]

이로부터

\(K(\frac{1}{\sqrt{2}})=(4-2\sqrt{2})K(3-2\sqrt{2})\)

\(K(\frac{1}{\sqrt{2}})=\frac{\Gamma(\frac{1}{4})^2}{4\sqrt{\pi}}=1.8540746773\cdots\) 로부터

\(K\left(3-2\sqrt{2}\right)=\frac{(2+\sqrt{2})\Gamma(\frac{1}{4})^2}{16\sqrt{\pi}}=1.58255\cdots\)


Chowla-셀베르그의 정리

정리

$k$에 대하여, 다음의 값 \[i\frac{K'}{K}(k):=i\frac{K(\sqrt{1-k^2})}{K(k)}\] 이 \(d_F\)를 판별식으로 갖는 복소이차수체 \(F=\mathbb{Q}(\sqrt{d_F})\)의 원소일 때, 제1종타원적분 K에 대하여 다음이 성립한다 \[{K}(k)=\lambda\sqrt{\pi}\left(\prod_{m=1}^{|d_F|}\Gamma(\frac{m}{|d_F|})^{\left(\frac{d_F}{m}\right)}\right)^{\frac{w_{F}}{4h_{F}}}\] 여기서 \(\lambda\)는 적당한 대수적수.


역사



관련된 항목들


매스매티카 파일 및 계산 리소스


사전 형태의 자료


관련논문



관련도서

  • [Borwein98]Pi and the AGM
    • Jonathan M. Borwein, Peter B. Borwein, Wiley-Interscience (July 13, 1998)
    • 26-28p, 51p, 67p, 139p, 298p


블로그