"포드 원 (Ford Circles)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
 
 
 
 
==개요==
 
==개요==
 
+
* <math>p,q</math>가 서로 소인 자연수일 때, 중심이 <math>(\frac{p}{q},\frac{1}{2q^2})</math> 이고, 반지름이 <math>\frac{1}{2q^2}</math>인 원을 포드 원이라 함
+
* <math>x</math>-축에 접한다
  
 
[[파일:포드 원 (Ford Circles)1.gif]]
 
[[파일:포드 원 (Ford Circles)1.gif]]
  
* <math>p,q</math>가 서로 소인 자연수일 때, 중심이 <math>(\frac{p}{q},\frac{1}{2q^2})</math> 이고, 반지름이 <math>\frac{1}{2q^2}</math>인 원을 포드 원이라 함
 
** <math>y=0</math>에 접함
 
[[파일:포드 원 (Ford Circles)2.gif]]
 
 
 
 
 
  
 
==관찰==
 
==관찰==
 
+
* 위 그림을 잘 보면서 관찰해 보자. (원 안에 적혀 있는 숫자는, 원 중심의 <math>x</math> 좌표이다.)
위 그림을 잘 보면서 관찰해 보자. (원 안에 적혀 있는 숫자는, 원 중심의 <math>x</math> 좌표이다.)
+
* <math>p,q</math>가 서로소인 자연수이므로, 원 중심의 <math>x</math> 좌표들은 기약분수이다.
 
+
* 서로 다른 포드 원은 만나지 않거나, 접한다.
+
* 접하는 두 포드 원 사이에는 어떤 관계가 있을까?
 
+
** <math>\frac35 , \frac23</math>
* <math>p,q</math>가 서로소인 자연수들이니까, 원 중심의 <math>x</math> 좌표들은 기약분수들이 되겠다.
+
** <math>\frac35 , \frac58</math>
* 서로 겹치는 Ford circle 은 없는 듯 하다.
+
** <math>\frac58, \frac23</math>
* 접하는 두 포드 원 사이에는 어떤 관계가 있을까?
+
** <math>\frac58, \frac{7}{11}</math>
** <math>\frac35 , \frac23</math>     <math>\frac35 , \frac58</math>     <math>\frac58, \frac23</math>     <math>\frac58, \frac{7}{11}</math>   ...
 
 
** <math>10-9 = 25-24 = 16 - 15 = 56 - 55 = \cdots = 1</math>
 
** <math>10-9 = 25-24 = 16 - 15 = 56 - 55 = \cdots = 1</math>
* 서로 접하는 세 포드 원 사이에는?
+
* 서로 접하는 세 포드 원 사이에는?
** <math>\frac35, \frac58 , \frac23</math>     <math>\frac35, \frac{8}{13} , \frac58</math>     <math>\frac58, \frac{7}{11} , \frac23</math>     <math>\frac47, \frac{7}{12} , \frac35</math>
+
** <math>\frac35, \frac58 , \frac23</math>
** 뭔가 발견했는가?
+
** <math>\frac35, \frac{8}{13} , \frac58</math>  
 
+
** <math>\frac58, \frac{7}{11} , \frac23</math>
이제 [[패리 수열(Farey series)|Farey series]] 를 읽고 다시 돌아오자. (오른쪽 클릭 - 새 탭 열기/새 창 열기)
+
** <math>\frac47, \frac{7}{12} , \frac35</math>
 
+
* 서로 접하는 세 원의 중심의 <math>x</math> 좌표를 보자. 저 세 수를 가지는 (가장 작은) [[패리 수열(Farey series)]]를 찾을 수 있겠는가? 그 때, 그 세 수는 어떻게 배열되어 있는가?
* 서로 접하는 세 원의 중심의 <math>x</math> 좌표를 보자. 저 세 수를 가지는 (가장 작은) Farey Series 를 찾을 수 있겠는가? 그 때, 그 세 수는 어떻게 배열되어 있는가?
 
 
 
 
  
 
   
 
   
80번째 줄: 65번째 줄:
  
 
3. Farey Series 와의 관계
 
3. Farey Series 와의 관계
 +
 +
 +
==메모==
 +
[[파일:포드 원 (Ford Circles)2.gif]]
 +
 +
  
 
==관련된 항목들==
 
==관련된 항목들==
  
* [[패리 수열(Farey series)|Farey series]]
+
* [[패리 수열(Farey series)]]
* [[모듈라 군, j-invariant and the singular moduli|The modular group, j-invariant and the singular moduli]]
+
* [[모듈라 군, j-invariant and the singular moduli]]
** [[모듈라 군(modular group)|modular group]]
+
* [[모듈라 군(modular group)]]
 
* [[연분수와 유리수 근사]]
 
* [[연분수와 유리수 근사]]
 
 
  
 
   
 
   
102번째 줄: 91번째 줄:
  
 
   
 
   
 
 
 
 
==리뷰, 에세이, 강의노트==
 
==리뷰, 에세이, 강의노트==
  
* [[3210238/attachments/1980825|Ford_Circle.pdf]], 애기똥풀
+
* 애기똥풀, [[파일:3210238-Ford Circle.pdf]]
 
* 이광연, [http://navercast.naver.com/science/math/1049 바보셈에서 페리수열], 네이버 오늘의 과학, 2009년 9월 8일
 
* 이광연, [http://navercast.naver.com/science/math/1049 바보셈에서 페리수열], 네이버 오늘의 과학, 2009년 9월 8일
  
 
   
 
   
  
 
  
 
==관련논문==
 
==관련논문==
 
* Athreya, Jayadev, Sneha Chaubey, Amita Malik, and Alexandru Zaharescu. “Geometry of Farey-Ford Polygons.” arXiv:1410.4908 [math], October 18, 2014. http://arxiv.org/abs/1410.4908.
 
* Athreya, Jayadev, Sneha Chaubey, Amita Malik, and Alexandru Zaharescu. “Geometry of Farey-Ford Polygons.” arXiv:1410.4908 [math], October 18, 2014. http://arxiv.org/abs/1410.4908.
 
* [http://www.jstor.org/stable/2302799 Fractions] L. R. Ford, <cite>The American Mathematical Monthly</cite>, Vol. 45, No. 9 (Nov., 1938), pp. 586-601
 
* [http://www.jstor.org/stable/2302799 Fractions] L. R. Ford, <cite>The American Mathematical Monthly</cite>, Vol. 45, No. 9 (Nov., 1938), pp. 586-601

2015년 11월 27일 (금) 21:27 판

개요

  • \(p,q\)가 서로 소인 자연수일 때, 중심이 \((\frac{p}{q},\frac{1}{2q^2})\) 이고, 반지름이 \(\frac{1}{2q^2}\)인 원을 포드 원이라 함
  • \(x\)-축에 접한다

포드 원 (Ford Circles)1.gif


관찰

  • 위 그림을 잘 보면서 관찰해 보자. (원 안에 적혀 있는 숫자는, 원 중심의 \(x\) 좌표이다.)
  • \(p,q\)가 서로소인 자연수이므로, 원 중심의 \(x\) 좌표들은 기약분수이다.
  • 서로 다른 두 포드 원은 만나지 않거나, 접한다.
  • 접하는 두 포드 원 사이에는 어떤 관계가 있을까?
    • \(\frac35 , \frac23\)
    • \(\frac35 , \frac58\)
    • \(\frac58, \frac23\)
    • \(\frac58, \frac{7}{11}\)
    • \(10-9 = 25-24 = 16 - 15 = 56 - 55 = \cdots = 1\)
  • 서로 접하는 세 포드 원 사이에는?
    • \(\frac35, \frac58 , \frac23\)
    • \(\frac35, \frac{8}{13} , \frac58\)
    • \(\frac58, \frac{7}{11} , \frac23\)
    • \(\frac47, \frac{7}{12} , \frac35\)
  • 서로 접하는 세 원의 중심의 \(x\) 좌표를 보자. 저 세 수를 가지는 (가장 작은) 패리 수열(Farey series)를 찾을 수 있겠는가? 그 때, 그 세 수는 어떻게 배열되어 있는가?


관찰의 증명

정리

두 포드 원은 만나지 않거나, 접한다.

증명

아래에 서로 다른 두 개의 포드 원을 그렸다. 원 A 는 중심의 \(x\) 좌표가 \(p/q\) 인 원이고, 원 B 는 중심의 \(x\) 좌표가 \(P/Q\) 인 원이다. (\(p,q, P, Q\) 는 자연수, \(gcd(p,q) = gcd(P, Q) = 1\))

포드 원 (Ford Circles)3.gif


위 그림에서, 점 \(A\) 에서 선분 \(\overline{BG}\) 위에 내린 발을 \(C\) 라 하자. 그러면 삼각형 \(\triangle ACB\) 는 직각삼각형이 된다. 피타고라스의 정리를 적용하면,

\(\overline{AB}^2 = \overline{BC}^2 + \overline{CA}^2\) 이다. 포드 원의 정의에서 \(A(\frac{p}{q}, \frac{1}{2q^2}), B(\frac{P}{Q}, \frac{1}{2Q^2}), C(\frac{P}{Q},\frac{1}{2q^2} )\) 이므로, 다음이 성립한다 $$ \overline{AB}^2 = (\overline{AD} + \overline{EB})^2 + \frac{(Pq - pQ)^2 - 1}{Q^2 q^2} $$

여기서,

i. \(|Pq -pQ|> 1\) 이면, \(\overline{AB} > \overline{AD} + \overline{EB}\) 이므로, 두 원은 서로 떨어져 있다.

ii. \(|Pq -pQ|= 1\) 이면, \(\overline{AB} = \overline{AD} + \overline{EB}\) 이므로, 두 원은 접한다.

iii. \(|Pq -pQ| <1\) 일 수는 없다.

왜냐하면, \(p,q, P, Q\) 는 자연수이므로 \(Pq -pQ = 0\) 이면, \(p/q \ne P/Q\) 에 모순이기 때문이다.

위 세 가지 경우에서, 서로 겹쳐 있는 두 포드 원은 없음을 알 수 있다. ■


정리

\(x\) 좌표가 \(p/q\) 인 포드 원을 \(C[p/q]\) 라고 쓰자. 두 포드 원 \(C[b/a]\) 과 \(C[d/c]\)이 접하면, \(|ad - bc| = 1\) 이 성립한다.

증명

관찰 1 의 증명 중 ii) 로부터 알 수 있다. ■

3. Farey Series 와의 관계


메모

포드 원 (Ford Circles)2.gif


관련된 항목들


매스매티카 파일 및 계산 리소스

사전형태의 자료


리뷰, 에세이, 강의노트



관련논문

  • Athreya, Jayadev, Sneha Chaubey, Amita Malik, and Alexandru Zaharescu. “Geometry of Farey-Ford Polygons.” arXiv:1410.4908 [math], October 18, 2014. http://arxiv.org/abs/1410.4908.
  • Fractions L. R. Ford, The American Mathematical Monthly, Vol. 45, No. 9 (Nov., 1938), pp. 586-601