"포함과 배제의 원리"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
10번째 줄: 10번째 줄:
 
* <math>|A\cup B \cup C| = |A| + |B| + |C| - |A\cap B| - |B\cap C| - |C\cap A| + |A\cap B\cap C|</math>
 
* <math>|A\cup B \cup C| = |A| + |B| + |C| - |A\cap B| - |B\cap C| - |C\cap A| + |A\cap B\cap C|</math>
 
*  일반적으로 집합 A의 부분집합 <math>A_i</math>에 대하여, 다음이 성립한다.<br><math>\biggl|\bigcup_{i=1}^n A_i\biggr| & {} =\sum_{i=1}^n\left|A_i\right|-\sum_{i,j\,:\,1 \le i < j \le n}\left|A_i\cap A_j\right| +\sum_{i,j,k\,:\,1 \le i < j < k \le n}\left|A_i\cap A_j\cap A_k\right|-\ \cdots\ + \left(-1\right)^{n-1} \left|A_1\cap\cdots\cap A_n\right|</math><br>
 
*  일반적으로 집합 A의 부분집합 <math>A_i</math>에 대하여, 다음이 성립한다.<br><math>\biggl|\bigcup_{i=1}^n A_i\biggr| & {} =\sum_{i=1}^n\left|A_i\right|-\sum_{i,j\,:\,1 \le i < j \le n}\left|A_i\cap A_j\right| +\sum_{i,j,k\,:\,1 \le i < j < k \le n}\left|A_i\cap A_j\cap A_k\right|-\ \cdots\ + \left(-1\right)^{n-1} \left|A_1\cap\cdots\cap A_n\right|</math><br>
 +
 +
* [[뫼비우스 반전공식]] 의 특별한 경우로 이해할 수 있다
  
 
 
 
 
 +
 +
<h5>증명</h5>
 +
 +
* 집합 A의 부분집합 <math>A_i</math>에 대하여, 다음이 성립한다
 +
 +
<math>\biggl|\bigcup_{i=1}^n A_i\biggr| & {} =\sum_{i=1}^n\left|A_i\right|-\sum_{i,j\,:\,1 \le i < j \le n}\left|A_i\cap A_j\right| +\sum_{i,j,k\,:\,1 \le i < j < k \le n}\left|A_i\cap A_j\cap A_k\right|-\ \cdots\ + \left(-1\right)^{n-1} \left|A_1\cap\cdots\cap A_n\right|</math>
  
 
(증명)
 
(증명)
19번째 줄: 27번째 줄:
 
 
 
 
  
 
+
<h5>응용</h5>
 
 
 
 
 
 
<h5>오일러</h5>
 
  
 
* [[오일러의 totient 함수]]
 
* [[오일러의 totient 함수]]
 +
* [[derangement]]
  
 
 
 
 

2012년 1월 4일 (수) 16:57 판

이 항목의 수학노트 원문주소

 

 

개요
  • \(|A\cup B| = |A| + |B| - |A \cap B|\)
  • \(|A\cup B \cup C| = |A| + |B| + |C| - |A\cap B| - |B\cap C| - |C\cap A| + |A\cap B\cap C|\)
  • 일반적으로 집합 A의 부분집합 \(A_i\)에 대하여, 다음이 성립한다.
    \(\biggl|\bigcup_{i=1}^n A_i\biggr| & {} =\sum_{i=1}^n\left|A_i\right|-\sum_{i,j\,:\,1 \le i < j \le n}\left|A_i\cap A_j\right| +\sum_{i,j,k\,:\,1 \le i < j < k \le n}\left|A_i\cap A_j\cap A_k\right|-\ \cdots\ + \left(-1\right)^{n-1} \left|A_1\cap\cdots\cap A_n\right|\)

 

증명
  • 집합 A의 부분집합 \(A_i\)에 대하여, 다음이 성립한다

\(\biggl|\bigcup_{i=1}^n A_i\biggr| & {} =\sum_{i=1}^n\left|A_i\right|-\sum_{i,j\,:\,1 \le i < j \le n}\left|A_i\cap A_j\right| +\sum_{i,j,k\,:\,1 \le i < j < k \le n}\left|A_i\cap A_j\cap A_k\right|-\ \cdots\ + \left(-1\right)^{n-1} \left|A_1\cap\cdots\cap A_n\right|\)

(증명)

\(a\in \bigcup_{i=1}^n A_i\) 가 \(A_i\) 들 중 k 개의 집합에 속해 있으면, a 는 우변을 통하여 \(\sum _{l=1}^k (-1)^{l-1} \binom{k}{l}=1\) 번 세어지게 된다. ■

 

응용

 

 

역사

 

 

 

메모

 

 

 

관련된 항목들

 

 

 

수학용어번역

 

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트

 

 

 

관련논문

 

 

관련도서