2차 방정식의 근의 공식

수학노트
이동: 둘러보기, 검색

개요

  • 이차방정식 \(ax^2+bx+c=0, a\neq 0\) 의 근의 공식

$$ x=\frac{-b\pm\sqrt{b^2-4 a c}}{2 a} $$

 

완전제곱식을 통한 유도

$$ \begin{aligned} ax^2+bx+c=& a(x^2+\frac{b}{a}+\frac{b^2}{4a^2})-\frac{b^2}{4a}+c\\ {}=& a(x+\frac{b}{2a})^2-\frac{b^2-4ac}{4a} \end{aligned} $$ 이로부터 $ax^2+bx+c=0$이면, $$ (x+\frac{b}{2a})^2=\frac{b^2-4ac}{4a^2} $$  

판별식

 

 

역사

 


 

관련된 항목들


매스매티카 파일 및 계산 리소스