"Chowla-셀베르그 공식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
==개요==
 
==개요==
 
+
* 복소이차수체 $F$에 대하여, $\mathcal{O}_{F}$에 의한 [[Complex multiplication]]을 갖는 [[타원곡선]]의 주기를 [[감마함수]]의 값을 이용하여 표현
* [[Epstein 제타함수]]에 대한 공식과 [[제1종타원적분 K (complete elliptic integral of the first kind)]] 에의 응용
+
* [[제1종타원적분 K (complete elliptic integral of the first kind)]]의 어떤 값을 감마함수로 표현하는 공식으로 나타난다
 +
* [[Epstein 제타함수]]에 대한 공식
  
 
   
 
   
30번째 줄: 31번째 줄:
  
 
==Chowla-셀베르그의 정리==
 
==Chowla-셀베르그의 정리==
 +
;정리
 +
$k$에 대하여, 다음의 값 :<math>i\frac{K'}{K}(k):=i\frac{K(\sqrt{1-k^2})}{K(k)}</math> 이 <math>d_F</math>를 판별식으로 갖는 복소이차수체 <math>F=\mathbb{Q}(\sqrt{d_F})</math>의 원소일 때, [[제1종타원적분 K (complete elliptic integral of the first kind)|제1종타원적분 K]]에 대하여 다음이 성립한다
 +
:<math>{K}(k)=\lambda\sqrt{\pi}\left(\prod_{m=1}^{|d_F|}\Gamma(\frac{m}{|d_F|})^{\left(\frac{d_F}{m}\right)}\right)^{\frac{w_{F}}{4h_{F}}}</math> 여기서 <math>\lambda</math>는 적당한 [[대수적수론|대수적수]].
  
*  (정리)
 
$k$에 대하여, 다음의 값 :<math>i\frac{K'}{K}(k):=i\frac{K(\sqrt{1-k^2})}{K(k)}</math> 이 <math>d_K</math>를 판별식으로 갖는 복소이차수체 <math>K=\mathbb{Q}(\sqrt{d_K})</math>의 원소일 때, [[제1종타원적분 K (complete elliptic integral of the first kind)|제1종타원적분 K]]에 대하여 다음이 성립한다.:<math>{K}(k)=\lambda\sqrt{\pi}\{\prod_{m=1}^{|d_K|}\Gamma(\frac{m}{|d_K|})^{\left(\frac{d_K}{m}\right)}\}^{w_{K}/{4h_{K}}}</math> 여기서 <math>\lambda</math>는 적당한 [[대수적수론|대수적수]].
 
 
 
 
 
  
==Chowla-셀베르그의 정리의 특수한 경우==
+
===특수한 경우===
  
*  소수 p에 대하여, 복소이차수체 <math>K=\mathbb{Q}(\sqrt{-p})</math>의 [[수체의 class number|class number]] 가 1인 경우, [[제1종타원적분 K (complete elliptic integral of the first kind)|제1종타원적분 K]]에 대하여 다음이 성립한다.
+
*  소수 p에 대하여, 복소이차수체 <math>F=\mathbb{Q}(\sqrt{-p})</math>의 [[수체의 class number|class number]] 가 1인 경우, [[제1종타원적분 K (complete elliptic integral of the first kind)|제1종타원적분 K]]에 대하여 다음이 성립한다
* <math>\frac{K'}{K}(k)=\sqrt{p}</math> 를 만족시키는 k를 찾자.:<math>\frac{K(k)}{2\pi}=\frac{2^{1/3}(kk')^{-1/6}}{\sqrt{2\pi p}}\{\prod_{m=1}^{|d_K|}\Gamma(\frac{m}{|d_K|})^{\left(\frac{d_K}{m}\right)}\}^{w_{K}}</math>
+
:<math>\frac{K(k)}{2\pi}=\frac{2^{1/3}(kk')^{-1/6}}{\sqrt{2\pi p}}\left(\prod_{m=1}^{|d_F|}\Gamma(\frac{m}{|d_F|})^{\left(\frac{d_F}{m}\right)}\right)^{w_{F}}</math>
 +
여기서 $k$는 <math>\frac{K'}{K}(k)=\sqrt{p}</math>의 해이고, $k'=\sqrt{1-k^2}$.
 
* <math>p=3</math>인 경우:<math>\frac{K}{2\pi}=\frac{2^{2/3}}{\sqrt{6\pi}}(\frac{\Gamma(\frac{1}{3})}{\Gamma(\frac{2}{3})})^{3/2}</math>
 
* <math>p=3</math>인 경우:<math>\frac{K}{2\pi}=\frac{2^{2/3}}{\sqrt{6\pi}}(\frac{\Gamma(\frac{1}{3})}{\Gamma(\frac{2}{3})})^{3/2}</math>
 
* <math>p=7</math>인 경우:<math>\frac{K}{2\pi}=\frac{2}{\sqrt{14\pi}}\sqrt{\frac{\Gamma(\frac{1}{7})\Gamma(\frac{2}{7})\Gamma(\frac{4}{7})}{\Gamma(\frac{3}{7})\Gamma(\frac{5}{7})\Gamma(\frac{6}{7})}}</math>
 
* <math>p=7</math>인 경우:<math>\frac{K}{2\pi}=\frac{2}{\sqrt{14\pi}}\sqrt{\frac{\Gamma(\frac{1}{7})\Gamma(\frac{2}{7})\Gamma(\frac{4}{7})}{\Gamma(\frac{3}{7})\Gamma(\frac{5}{7})\Gamma(\frac{6}{7})}}</math>
 
 
 
 
 
==역사==
 
 
* [[수학사연표 (역사)|수학사연표]]
 
 
 
   
 
   
  
72번째 줄: 62번째 줄:
 
* [[제1종타원적분 K (complete elliptic integral of the first kind)]]
 
* [[제1종타원적분 K (complete elliptic integral of the first kind)]]
 
* [[렘니스케이트(lemniscate) 곡선의 길이와 타원적분|렘니스케이트(lemniscate) 곡선과 타원적분]]
 
* [[렘니스케이트(lemniscate) 곡선의 길이와 타원적분|렘니스케이트(lemniscate) 곡선과 타원적분]]
* [[감마함수]]
 
  
  

2013년 12월 29일 (일) 19:19 판

개요



Epstein 제타함수

\[\zeta_Q(s) =\sum_{(X,Y)\ne (0,0)}\frac{1}{(aX^2+bXY+cy^2)^s}\]



제1종 타원적분

\[\frac{K'}{K}(\frac{1}{\sqrt{2}})= 1 \Rightarrow K(\frac{1}{\sqrt{2}})=\frac{1}{4}B(1/4,1/4)=\frac{\Gamma(\frac{1}{4})^2}{4\sqrt{\pi}}=1.8540746773\cdots\] \[\frac{K'}{K}(\sqrt{2}-1)= \sqrt{2} \Rightarrow K(\sqrt{2}-1)=\frac{\sqrt{\sqrt{2}+1}}{2^{13/4}}B(\frac{1}{8},\frac{3}{8})=\frac{\sqrt{\sqrt{2}+1}\Gamma(\frac{1}{8})\Gamma(\frac{3}{8})}{2^{13/4}\sqrt{\pi}}\] \[\frac{K'}{K}\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)= \sqrt{3} \Rightarrow K\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{4\sqrt[4]{3}\sqrt{\pi}}=1.5981420\cdots\]

  • lemniscate 곡선의 길이와 타원적분\[4\int_0^1\frac{dx}{\sqrt{1-x^4}}=B(\frac{1}{2},\frac{1}{4})=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}=\frac{\Gamma(1/4)^2}{\sqrt{2\pi}}=5.24\cdots\]
  • 제1종타원적분 K (complete elliptic integral of the first kind)\[\int_0^1\frac{dx}{\sqrt{1-x^3}}=\frac{1}{3}B(\frac{1}{2},\frac{1}{3})=\frac{1}{6}B(\frac{1}{3},\frac{1}{6})\]\[6\int_{0}^{1} \frac{dx}{\sqrt{1-x^3}}=B(\frac{1}{3},\frac{1}{6})=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{\Gamma(\frac{1}{2})}=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{\sqrt{\pi}}=8.413\cdots\]



Chowla-셀베르그의 정리

정리

$k$에 대하여, 다음의 값 \[i\frac{K'}{K}(k):=i\frac{K(\sqrt{1-k^2})}{K(k)}\] 이 \(d_F\)를 판별식으로 갖는 복소이차수체 \(F=\mathbb{Q}(\sqrt{d_F})\)의 원소일 때, 제1종타원적분 K에 대하여 다음이 성립한다 \[{K}(k)=\lambda\sqrt{\pi}\left(\prod_{m=1}^{|d_F|}\Gamma(\frac{m}{|d_F|})^{\left(\frac{d_F}{m}\right)}\right)^{\frac{w_{F}}{4h_{F}}}\] 여기서 \(\lambda\)는 적당한 대수적수.


특수한 경우

\[\frac{K(k)}{2\pi}=\frac{2^{1/3}(kk')^{-1/6}}{\sqrt{2\pi p}}\left(\prod_{m=1}^{|d_F|}\Gamma(\frac{m}{|d_F|})^{\left(\frac{d_F}{m}\right)}\right)^{w_{F}}\] 여기서 $k$는 \(\frac{K'}{K}(k)=\sqrt{p}\)의 해이고, $k'=\sqrt{1-k^2}$.

  • \(p=3\)인 경우\[\frac{K}{2\pi}=\frac{2^{2/3}}{\sqrt{6\pi}}(\frac{\Gamma(\frac{1}{3})}{\Gamma(\frac{2}{3})})^{3/2}\]
  • \(p=7\)인 경우\[\frac{K}{2\pi}=\frac{2}{\sqrt{14\pi}}\sqrt{\frac{\Gamma(\frac{1}{7})\Gamma(\frac{2}{7})\Gamma(\frac{4}{7})}{\Gamma(\frac{3}{7})\Gamma(\frac{5}{7})\Gamma(\frac{6}{7})}}\]



메모

  • p-adic case Gross-Koblitz form



관련된 항목들


사전 형태의 자료


리뷰, 에세이, 강의노트


관련논문



관련도서