"Chowla-셀베르그 공식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
74번째 줄: 74번째 줄:
 
* [[감마함수]]
 
* [[감마함수]]
  
==수학용어번역==
 
  
* http://www.google.com/dictionary?langpair=en|ko&q=
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
 
  
 
==사전 형태의 자료==
 
==사전 형태의 자료==
92번째 줄: 83번째 줄:
  
 
   
 
   
 
+
==리뷰, 에세이, 강의노트==
 +
* [http://dx.doi.org/10.1090%2FS0273-0979-08-01223-8 The lord of the numbers, Atle Selberg. On his life and mathematics]
 +
** Baas, Nils A.; Skau, Christian F. (2008), Bull. Amer. Math. Soc. 45: 617–649,
 +
** Interview with Selberg
 
   
 
   
  
 
==관련논문==
 
==관련논문==
 
+
* Van der Poorten, Alfred, and Kenneth S. Williams. 1999. “Values of the Dedekind Eta Function at Quadratic Irrationalities.” Canadian Journal of Mathematics. Journal Canadien de Mathématiques 51 (1): 176–224. doi:10.4153/CJM-1999-011-1.
* [http://dx.doi.org/10.1090%2FS0273-0979-08-01223-8 The lord of the numbers, Atle Selberg. On his life and mathematics]
 
** Baas, Nils A.; Skau, Christian F. (2008), Bull. Amer. Math. Soc. 45: 617–649,
 
** Interview with Selberg
 
 
* [http://dx.doi.org/10.1007/BF01390273 On the periods of abelian integrals and a formula of Chowla and Selberg]
 
* [http://dx.doi.org/10.1007/BF01390273 On the periods of abelian integrals and a formula of Chowla and Selberg]
 
** Benedict H. Gross, Inventiones Mathematicae, Volume 45, Number 2 / 1978년 6월
 
** Benedict H. Gross, Inventiones Mathematicae, Volume 45, Number 2 / 1978년 6월
109번째 줄: 100번째 줄:
 
** Max F. Deuring, The Annals of Mathematics, Second Series, Vol. 38, No. 3 (Jul., 1937), pp. 585-593
 
** Max F. Deuring, The Annals of Mathematics, Second Series, Vol. 38, No. 3 (Jul., 1937), pp. 585-593
  
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://dx.doi.org/
 
 
 
  
 
   
 
   

2013년 12월 20일 (금) 04:49 판

개요



Epstein 제타함수

\[\zeta_Q(s) =\sum_{(X,Y)\ne (0,0)}\frac{1}{(aX^2+bXY+cy^2)^s}\]



제1종 타원적분

\[\frac{K'}{K}(\frac{1}{\sqrt{2}})= 1 \Rightarrow K(\frac{1}{\sqrt{2}})=\frac{1}{4}B(1/4,1/4)=\frac{\Gamma(\frac{1}{4})^2}{4\sqrt{\pi}}=1.8540746773\cdots\] \[\frac{K'}{K}(\sqrt{2}-1)= \sqrt{2} \Rightarrow K(\sqrt{2}-1)=\frac{\sqrt{\sqrt{2}+1}}{2^{13/4}}B(\frac{1}{8},\frac{3}{8})=\frac{\sqrt{\sqrt{2}+1}\Gamma(\frac{1}{8})\Gamma(\frac{3}{8})}{2^{13/4}\sqrt{\pi}}\] \[\frac{K'}{K}\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)= \sqrt{3} \Rightarrow K\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{4\sqrt[4]{3}\sqrt{\pi}}=1.5981420\cdots\]

  • lemniscate 곡선의 길이와 타원적분\[4\int_0^1\frac{dx}{\sqrt{1-x^4}}=B(\frac{1}{2},\frac{1}{4})=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}=\frac{\Gamma(1/4)^2}{\sqrt{2\pi}}=5.24\cdots\]
  • 제1종타원적분 K (complete elliptic integral of the first kind)\[\int_0^1\frac{dx}{\sqrt{1-x^3}}=\frac{1}{3}B(\frac{1}{2},\frac{1}{3})=\frac{1}{6}B(\frac{1}{3},\frac{1}{6})\]\[6\int_{0}^{1} \frac{dx}{\sqrt{1-x^3}}=B(\frac{1}{3},\frac{1}{6})=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{\Gamma(\frac{1}{2})}=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{\sqrt{\pi}}=8.413\cdots\]



Chowla-셀베르그의 정리

  • (정리)

$k$에 대하여, 다음의 값 \[i\frac{K'}{K}(k):=i\frac{K(\sqrt{1-k^2})}{K(k)}\] 이 \(d_K\)를 판별식으로 갖는 복소이차수체 \(K=\mathbb{Q}(\sqrt{d_K})\)의 원소일 때, 제1종타원적분 K에 대하여 다음이 성립한다.\[{K}(k)=\lambda\sqrt{\pi}\{\prod_{m=1}^{|d_K|}\Gamma(\frac{m}{|d_K|})^{\left(\frac{d_K}{m}\right)}\}^{w_{K}/{4h_{K}}}\] 여기서 \(\lambda\)는 적당한 대수적수.



Chowla-셀베르그의 정리의 특수한 경우

  • 소수 p에 대하여, 복소이차수체 \(K=\mathbb{Q}(\sqrt{-p})\)의 class number 가 1인 경우, 제1종타원적분 K에 대하여 다음이 성립한다.
  • \(\frac{K'}{K}(k)=\sqrt{p}\) 를 만족시키는 k를 찾자.\[\frac{K(k)}{2\pi}=\frac{2^{1/3}(kk')^{-1/6}}{\sqrt{2\pi p}}\{\prod_{m=1}^{|d_K|}\Gamma(\frac{m}{|d_K|})^{\left(\frac{d_K}{m}\right)}\}^{w_{K}}\]
  • \(p=3\)인 경우\[\frac{K}{2\pi}=\frac{2^{2/3}}{\sqrt{6\pi}}(\frac{\Gamma(\frac{1}{3})}{\Gamma(\frac{2}{3})})^{3/2}\]
  • \(p=7\)인 경우\[\frac{K}{2\pi}=\frac{2}{\sqrt{14\pi}}\sqrt{\frac{\Gamma(\frac{1}{7})\Gamma(\frac{2}{7})\Gamma(\frac{4}{7})}{\Gamma(\frac{3}{7})\Gamma(\frac{5}{7})\Gamma(\frac{6}{7})}}\]



역사



메모

  • p-adic case Gross-Koblitz form



관련된 항목들


사전 형태의 자료


리뷰, 에세이, 강의노트


관련논문



관련도서