"타원곡선"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
22번째 줄: 22번째 줄:
 
<h5>격자와 타원곡선</h5>
 
<h5>격자와 타원곡선</h5>
  
*  타원곡선 <math>y^2=4x^3-g_2(\tau)x-g_3</math><br><math>g_2(\tau) = 60G_4=60\sum_{ (m,n) \neq (0,0)} \frac{1}{(m+n\tau )^{4}}</math><br><math>g_3(\tau) = 140G_6=140\sum_{ (m,n) \neq (0,0)} \frac{1}{(m+n\tau )^{6}}</math><br>
+
*  타원곡선 <math>y^2=4x^3-g_2(\tau)x-g_3(\tau)</math><br><math>g_2(\tau) = 60G_4=60\sum_{ (m,n) \neq (0,0)} \frac{1}{(m+n\tau )^{4}}</math><br><math>g_3(\tau) = 140G_6=140\sum_{ (m,n) \neq (0,0)} \frac{1}{(m+n\tau )^{6}}</math><br>
  
 
* [[아이젠슈타인 급수(Eisenstein series)]]<br>
 
* [[아이젠슈타인 급수(Eisenstein series)]]<br>
 
* [[바이어슈트라스 타원함수 ℘|바이어슈트라스의 타원함수]]<br>
 
* [[바이어슈트라스 타원함수 ℘|바이어슈트라스의 타원함수]]<br>
 +
 +
 
 +
 +
 
 +
 +
<h5>periods</h5>
 +
 +
 
  
 
 
 
 
46번째 줄: 54번째 줄:
  
 
* <math>y^2=x^3+ax^2+bx+c</math>위의 점 <math>P=(x,y)</math>에 대하여,<br><math>2P</math>의 <math>x</math>좌표는<math>\frac{x^4-2bx^2-8cx-4ac+b^2}{4y^2}</math> 로 주어진다<br>
 
* <math>y^2=x^3+ax^2+bx+c</math>위의 점 <math>P=(x,y)</math>에 대하여,<br><math>2P</math>의 <math>x</math>좌표는<math>\frac{x^4-2bx^2-8cx-4ac+b^2}{4y^2}</math> 로 주어진다<br>
 
 
 
  
 
 
 
 
127번째 줄: 133번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 다른 주제들</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들</h5>
  
 
* [[타원적분(통합됨)|타원적분]]<br>
 
* [[타원적분(통합됨)|타원적분]]<br>

2010년 7월 13일 (화) 15:55 판

이 항목의 스프링노트 원문주소

 

 

개요

 

 

 

격자와 타원곡선
  • 타원곡선 \(y^2=4x^3-g_2(\tau)x-g_3(\tau)\)
    \(g_2(\tau) = 60G_4=60\sum_{ (m,n) \neq (0,0)} \frac{1}{(m+n\tau )^{4}}\)
    \(g_3(\tau) = 140G_6=140\sum_{ (m,n) \neq (0,0)} \frac{1}{(m+n\tau )^{6}}\)

 

 

periods

 

 

 

군의 구조
  • chord-tangent method
  • 유리수해에 대한 Mordell theorem
    • 유리수체 위에 정의된 타원의 유리수해는 유한생성아벨군의 구조를 가짐
    • \(E(\mathbb{Q})=\mathbb{Z}^r \oplus E(\mathbb{Q})_{\operatorname{Tor}}\)
    • 여기서 \(E(\mathbb{Q})_{\operatorname{Tor}}\)는 \(E(\mathbb{Q})\)의 원소 중에서 order가 유한이 되는 원소들로 이루어진 유한군

 

 

덧셈공식
  • \(y^2=x^3+ax^2+bx+c\)위의 점 \(P=(x,y)\)에 대하여,
    \(2P\)의 \(x\)좌표는\(\frac{x^4-2bx^2-8cx-4ac+b^2}{4y^2}\) 로 주어진다

 

 

rank와 torsion
  • \(E(\mathbb{Q})_{\operatorname{Tor}}\)는 오직 다음 열다섯가지 경우만이 가능하다
    크기가 1,2,3,4,5,6,7,8,9,10,12 (11은 불가)인 순환군 또는 \(\frac{\mathbb Z}{2\mathbb Z}\oplus \frac{\mathbb Z}{n\mathbb Z}\) for n=1,2,3,4
  • 예) \(E_n : y^2=x^3-n^2x\)의 torsion은 \(\{(\infty,\infty), (0,0),(n,0),(-n,0)\}\)임

 

 

Hasse-Weil 정리
  • \(|\#E(\mathbb{F}_p)-p-1|\leq 2\sqrt{p}\)

 

 

 

타원곡선의 L-함수
  • Hasse-Weil 제타함수라고도 함
  • 타원 곡선 E의 conductor가 N일 때, 다음과 같이 정의됨
    \(L(s,E)=\prod_pL_p(s,E)^{-1}\)
    여기서 
    \(L_p(s,E)=\left\{\begin{array}{ll} (1-a_pp^{-s}+p^{1-2s}), & \mbox{if }p\nmid N \\ (1-a_pp^{-s}), & \mbox{if }p||N \\ 1, & \mbox{if }p^2|N \end{array}\right\)
  • 여기서 \(a_p\)는 유한체위에서의 해의 개수와 관련된 정수
  • Birch and Swinnerton-Dyer 추측 항목 참조

 

 

타니야마-시무라 추측(정리)

 

 

Birch and Swinnerton-Dyer 추측

 

 

 

재미있는 사실

 

 

역사

 

 

 

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

expository articles

 

 

관련논문

 

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그