"그린 정리"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
6번째 줄: | 6번째 줄: | ||
==폐곡선에 둘러싸인 영역의 넓이== | ==폐곡선에 둘러싸인 영역의 넓이== | ||
* 폐곡선 C에 둘러싸인 영역의 넓이는 다음 공식으로 주어진다 :<math>A=\oint_{C} x dy = \oint_{C} - y dx =\frac{1}{2}\oint_{C} x dy-y dx</math> | * 폐곡선 C에 둘러싸인 영역의 넓이는 다음 공식으로 주어진다 :<math>A=\oint_{C} x dy = \oint_{C} - y dx =\frac{1}{2}\oint_{C} x dy-y dx</math> | ||
+ | |||
===증명=== | ===증명=== | ||
18번째 줄: | 19번째 줄: | ||
==꼭지점이 주어진 다각형의 넓이== | ==꼭지점이 주어진 다각형의 넓이== | ||
* 평면위의 점 $P_i=(x_i,y_i), i=0,1,\cdots, n-1$을 꼭지점으로 갖는 n-각형 $\overline{P_0P_1\cdots P_{n-1}}$의 넓이 $A$는 다음으로 주어진다 $$A=\frac{1}{2}\sum_{i=0}^{n-1}x_iy_{i+1}-y_ix_{i+1}$$ 이 때, $(x_{n},y_{n})=(x_{0},y_{0}).$ 이다 | * 평면위의 점 $P_i=(x_i,y_i), i=0,1,\cdots, n-1$을 꼭지점으로 갖는 n-각형 $\overline{P_0P_1\cdots P_{n-1}}$의 넓이 $A$는 다음으로 주어진다 $$A=\frac{1}{2}\sum_{i=0}^{n-1}x_iy_{i+1}-y_ix_{i+1}$$ 이 때, $(x_{n},y_{n})=(x_{0},y_{0}).$ 이다 | ||
+ | |||
==역사== | ==역사== | ||
35번째 줄: | 37번째 줄: | ||
* [http://www.youtube.com/watch?v=pvGuGaImTek Digital planimeter demonstration ] | * [http://www.youtube.com/watch?v=pvGuGaImTek Digital planimeter demonstration ] | ||
* [http://www.mathematik.com/Planimeter/explanation.html How does the planimeter work?] | * [http://www.mathematik.com/Planimeter/explanation.html How does the planimeter work?] | ||
+ | |||
+ | |||
+ | ==매스매티카 파일 및 계산 리소스== | ||
+ | * https://docs.google.com/file/d/0B8XXo8Tve1cxZThyY3Rtbk9BMFE/edit?usp=drivesdk | ||
+ | |||
==관련된 항목들== | ==관련된 항목들== | ||
42번째 줄: | 49번째 줄: | ||
* [[타원의 넓이]] | * [[타원의 넓이]] | ||
* [[픽의 정리(Pick's Theorem)]] | * [[픽의 정리(Pick's Theorem)]] | ||
+ | |||
==사전 형태의 자료== | ==사전 형태의 자료== | ||
− | * | + | * http://ko.wikipedia.org/wiki/그린정리 |
* http://en.wikipedia.org/wiki/Green_theorem | * http://en.wikipedia.org/wiki/Green_theorem | ||
2013년 11월 9일 (토) 06:07 판
개요
- 스토크스 정리의 특수한 경우\[\iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)\, {d}A=\oint_{\partial D} (P\, {d}x + Q\, {d}y)\]
폐곡선에 둘러싸인 영역의 넓이
- 폐곡선 C에 둘러싸인 영역의 넓이는 다음 공식으로 주어진다 \[A=\oint_{C} x dy = \oint_{C} - y dx =\frac{1}{2}\oint_{C} x dy-y dx\]
증명
면적은 \(A= \iint_{D} 1 \, {d}A\)으로 주어지므로, 그린 정리를 이용하여 다음 각각의 경우 \(P,Q\) 가 \(\left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)=1\)을 만족함을 보이면 된다.
- \(P=0,Q=x\)
- \(P=-y,Q=0\)
- \(P=-y/2,Q=x/2\)
꼭지점이 주어진 다각형의 넓이
- 평면위의 점 $P_i=(x_i,y_i), i=0,1,\cdots, n-1$을 꼭지점으로 갖는 n-각형 $\overline{P_0P_1\cdots P_{n-1}}$의 넓이 $A$는 다음으로 주어진다 $$A=\frac{1}{2}\sum_{i=0}^{n-1}x_iy_{i+1}-y_ix_{i+1}$$ 이 때, $(x_{n},y_{n})=(x_{0},y_{0}).$ 이다
역사
메모
매스매티카 파일 및 계산 리소스
관련된 항목들
사전 형태의 자료
관련논문
- Connectivity and Smoke-Rings: Green's Second Identity in Its First Fifty Years
- Thomas Archibald, , Math. Mag. 62 (1989), 219-232
- http://www.jstor.org/action/doBasicSearch?Query=
- http://www.ams.org/mathscinet
- http://dx.doi.org/