"그린 정리"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
18번째 줄: 18번째 줄:
  
 
==꼭지점이 주어진 다각형의 넓이==
 
==꼭지점이 주어진 다각형의 넓이==
* 평면위의 점 $P_i=(x_i,y_i), i=0,1,\cdots, n-1$을 꼭지점으로 갖는 n-각형 $\overline{P_0P_1\cdots P_{n-1}}$의 넓이 $A$는 다음으로 주어진다 $$A=\frac{1}{2}\sum_{i=0}^{n-1}x_iy_{i+1}-y_ix_{i+1}$$ 이 때, $(x_{n},y_{n})=(x_{0},y_{0}).$ 이다
+
* 평면위의 점 <math>P_i=(x_i,y_i), i=0,1,\cdots, n-1</math>을 꼭지점으로 갖는 n-각형 <math>\overline{P_0P_1\cdots P_{n-1}}</math>의 넓이 <math>A</math>는 다음으로 주어진다 :<math>A=\frac{1}{2}\sum_{i=0}^{n-1}x_iy_{i+1}-y_ix_{i+1}</math> 이 때, <math>(x_{n},y_{n})=(x_{0},y_{0}).</math> 이다
  
  
62번째 줄: 62번째 줄:
 
==관련논문==
 
==관련논문==
  
* [http://www.jstor.org/stable/2689760 Connectivity and Smoke-Rings: Green's Second Identity in Its First Fifty Years]<br>
+
* [http://www.jstor.org/stable/2689760 Connectivity and Smoke-Rings: Green's Second Identity in Its First Fifty Years]
 
** Thomas Archibald, , Math. Mag. 62 (1989), 219-232
 
** Thomas Archibald, , Math. Mag. 62 (1989), 219-232
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.jstor.org/action/doBasicSearch?Query=

2020년 11월 16일 (월) 03:57 판

개요

  • 스토크스 정리의 특수한 경우\[\iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)\, {d}A=\oint_{\partial D} (P\, {d}x + Q\, {d}y)\]


폐곡선에 둘러싸인 영역의 넓이

  • 폐곡선 C에 둘러싸인 영역의 넓이는 다음 공식으로 주어진다 \[A=\oint_{C} x dy = \oint_{C} - y dx =\frac{1}{2}\oint_{C} x dy-y dx\]


증명

면적은 \(A= \iint_{D} 1 \, {d}A\)으로 주어지므로, 그린 정리를 이용하여 다음 각각의 경우 \(P,Q\) 가 \(\left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)=1\)을 만족함을 보이면 된다.

  • \(P=0,Q=x\)
  • \(P=-y,Q=0\)
  • \(P=-y/2,Q=x/2\)


꼭지점이 주어진 다각형의 넓이

  • 평면위의 점 \(P_i=(x_i,y_i), i=0,1,\cdots, n-1\)을 꼭지점으로 갖는 n-각형 \(\overline{P_0P_1\cdots P_{n-1}}\)의 넓이 \(A\)는 다음으로 주어진다 \[A=\frac{1}{2}\sum_{i=0}^{n-1}x_iy_{i+1}-y_ix_{i+1}\] 이 때, \((x_{n},y_{n})=(x_{0},y_{0}).\) 이다


역사



메모


매스매티카 파일 및 계산 리소스


관련된 항목들


사전 형태의 자료



관련논문