"수학사 연표"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
14번째 줄: 14번째 줄:
 
<h5>16세기</h5>
 
<h5>16세기</h5>
  
 
+
* 1545년 카르다노가 'Ars Magna' 를 출판
 
 
 
 
  
 
 
 
 
119번째 줄: 117번째 줄:
 
* [http://en.wikipedia.org/wiki/1854 1854] - [http://en.wikipedia.org/wiki/Arthur_Cayley Arthur Cayley] shows that [http://en.wikipedia.org/wiki/Quaternion quaternions] can be used to represent rotations in four-dimensional [http://en.wikipedia.org/wiki/Space space],
 
* [http://en.wikipedia.org/wiki/1854 1854] - [http://en.wikipedia.org/wiki/Arthur_Cayley Arthur Cayley] shows that [http://en.wikipedia.org/wiki/Quaternion quaternions] can be used to represent rotations in four-dimensional [http://en.wikipedia.org/wiki/Space space],
 
* 1858 - 뫼비우스가 [[#|뫼비우스의 띠]]를 발견
 
* 1858 - 뫼비우스가 [[#|뫼비우스의 띠]]를 발견
* 1858 - 에르미트와 크로네커가 [[타원함수]]를 이용하여 오차방정식의 해를 구함 [[#|(오차방정식과 정이십면체]]
+
* 1858 - 에르미트와 크로네커가 [[타원함수]]를 이용하여 오차방정식의 해를 구함 ([[#|오차방정식과 정이십면체]])
 
* [http://en.wikipedia.org/wiki/1859 1859] - 리만이 [[리만가설]]을 발표
 
* [http://en.wikipedia.org/wiki/1859 1859] - 리만이 [[리만가설]]을 발표
 
* [http://en.wikipedia.org/wiki/1870 1870] - [http://en.wikipedia.org/wiki/Felix_Klein Felix Klein] constructs an analytic geometry for Lobachevski's geometry thereby establishing its self-consistency and the logical independence of Euclid's fifth postulate,
 
* [http://en.wikipedia.org/wiki/1870 1870] - [http://en.wikipedia.org/wiki/Felix_Klein Felix Klein] constructs an analytic geometry for Lobachevski's geometry thereby establishing its self-consistency and the logical independence of Euclid's fifth postulate,
* [http://en.wikipedia.org/wiki/1873 1873] - [http://en.wikipedia.org/wiki/Charles_Hermite Charles Hermite]  [[#|자연상수 e는 초월수]] 임을 증명
+
* [http://en.wikipedia.org/wiki/1873 1873] - [http://en.wikipedia.org/wiki/Charles_Hermite ]에르미트가 [[#|자연상수 e는 초월수]] 임을 증명
 
* [http://en.wikipedia.org/wiki/1873 1873] - 프로베니우스([http://en.wikipedia.org/wiki/Georg_Frobenius Georg Frobenius])가 [[정규특이점(regular singular points)]]을 가지는 선형미분방정식의 급수해 찾는 방법을 소개함
 
* [http://en.wikipedia.org/wiki/1873 1873] - 프로베니우스([http://en.wikipedia.org/wiki/Georg_Frobenius Georg Frobenius])가 [[정규특이점(regular singular points)]]을 가지는 선형미분방정식의 급수해 찾는 방법을 소개함
 
* [http://en.wikipedia.org/wiki/1874 1874] - [http://en.wikipedia.org/wiki/Georg_Cantor Georg Cantor] shows that the set of all [http://en.wikipedia.org/wiki/Real_number real numbers] is [http://en.wikipedia.org/wiki/Uncountable uncountably infinite] but the set of all [http://en.wikipedia.org/wiki/Algebraic_number algebraic numbers] is [http://en.wikipedia.org/wiki/Countable countably infinite]. Contrary to widely held beliefs, his method was not his famous [http://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument diagonal argument], which he published three years later. (Nor did he formulate [http://en.wikipedia.org/wiki/Set_theory set theory] at this time.)
 
* [http://en.wikipedia.org/wiki/1874 1874] - [http://en.wikipedia.org/wiki/Georg_Cantor Georg Cantor] shows that the set of all [http://en.wikipedia.org/wiki/Real_number real numbers] is [http://en.wikipedia.org/wiki/Uncountable uncountably infinite] but the set of all [http://en.wikipedia.org/wiki/Algebraic_number algebraic numbers] is [http://en.wikipedia.org/wiki/Countable countably infinite]. Contrary to widely held beliefs, his method was not his famous [http://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument diagonal argument], which he published three years later. (Nor did he formulate [http://en.wikipedia.org/wiki/Set_theory set theory] at this time.)

2012년 1월 10일 (화) 18:49 판

 

15세기

 

 

 

16세기
  • 1545년 카르다노가 'Ars Magna' 를 출판

 

 

17세기

 

 


18세기


 

 

19세기


 

 

20세기

 

 

중요 수학 저술

 

 

 

관련링크와 웹페이지

 

관련도서

 

사전형태의 자료