로저스-라마누잔 항등식

수학노트
http://bomber0.myid.net/ (토론)님의 2010년 3월 8일 (월) 08:27 판
둘러보기로 가기 검색하러 가기
이 항목의 스프링노트 원문주소

 

 

개요
  • 라마누잔이 하디에게 보낸 편지에는 다음과 같은 공식이 포함되어 있음

\(\cfrac{1}{1 + \cfrac{e^{-2\pi}}{1 + \cfrac{e^{-4\pi}}{1+\dots}}} = \left({\sqrt{5+\sqrt{5}\over 2}-{\sqrt{5}+1\over 2}}\right)e^{2\pi/5} = e^{2\pi/5}\left({\sqrt{\varphi\sqrt{5}}-\varphi}\right) = 0.9981360\dots\)

\(\varphi\) 는 황금비

  • 위의 식은 모듈라군 \(\Gamma(5)\)에 대한 모듈라 함수 \(r(\tau)\)의 special value 로 이해할 수 있음
  • 오차방정식과 정이십면체와 깊은 관계를 가짐

 

 

로저스-라마누잔 항등식

\(G(q) = \sum_{n=0}^\infty \frac {q^{n^2}} {(q;q)_n} = \frac {1}{(q;q^5)_\infty (q^4; q^5)_\infty} =1+ q +q^2 +q^3 +2q^4+2q^5 +3q^6+\cdots\)

 

 \(H(q) =\sum_{n=0}^\infty \frac {q^{n^2+n}} {(q;q)_n} = \frac {1}{(q^2;q^5)_\infty (q^3; q^5)_\infty} =1+q^2 +q^3 +q^4+q^5 +2q^6+\cdots\)

\((a;q)_n = \prod_{k=0}^{n-1} (1-aq^k)=(1-a)(1-aq)(1-aq^2)\cdots(1-aq^{n-1})\)

 

 

 

연분수로 정의된 함수의 점화식

\(R(z)=\sum_{n\geq 0}\frac{z^nq^{n^2}}{(1-q)\cdots(1-q^n)}=\sum_{n\geq 0}\frac{z^nq^{n^2}}{(1-q)_q^n}\)

\(H(q)=R(q), G(q)=R(1)\)

 

(정리)

\(R(z)=R(zq)+zqR(zq^2)\)

 

증명

\(R(zq)=\sum_{n\geq 0}\frac{(zq)^nq^{n^2}}{(1-q)_q^n}=\sum_{n\geq 0}\frac{z^nq^{n^2+n}}{(1-q)_q^n}\)

\(R(zq^2)=\sum_{n\geq 0}\frac{(zq^2)^nq^{n^2}}{(1-q)_q^n}=\sum_{n\geq 0}\frac{z^nq^{n^2+2n}}{(1-q)_q^n}\)

\(zqR(zq^2)=\sum_{n\geq 0}\frac{z^{n+1}q^{(n+1)^2}}{(1-q)_q^n}=\sum_{n\geq 1}\frac{z^{n}q^{n^2}}{(1-q)_q^{n-1}}\)

\(R(zq)+zqR(zq^2)=\sum_{n\geq 0}\frac{z^nq^{n^2+n}}{(1-q)_q^n}+\sum_{n\geq 1}\frac{z^{n}q^{n^2+n}}{(1-q)_q^{n-1}}\)

\(R(zq)+zqR(zq^2)=\sum_{n\geq 0}\frac{z^nq^{n^2+n}}{(1-q)_q^n}+\sum_{n\geq 1}\frac{z^{n}q^{n^2}}{(1-q)_q^{n-1}} \\ =1+ \sum_{n\geq 1}\frac{z^nq^{n^2+n}+z^nq^{n^2}(1-q^n)}{(1-q)_q^n} \\ =1+\sum_{n\geq 0}\frac{z^nq^{n^2}}{(1-q)_q^n} = R(z)\)  ■

 

이 정리로부터 \(R(q^n)=R(q^{n+1})+q^{n+1}R(q^{n+2})\)

즉 \(\frac{R(q^{n+1})}{R(q^n)}=\cfrac{1}{1+q^{n+1}\cfrac{R(q^{n+2})}{R(q^{n+1})}}\)를 얻는다.

 

\(\frac{H(q)}{G(q)}=\cfrac{R(q)}{R(1)} = \cfrac{1}{1+q\cfrac{R(q^2)}{R(q)}}=\cfrac{1}{1+\cfrac{q}{1+q^2\cfrac{R(q^3)}{R(q^2)}}}=\cdots\)

이를 반복하면, 다음을 얻는다.

\(\frac{H(q)}{G(q)} = \cfrac{1}{1+\cfrac{q}{1+\cfrac{q^2}{1+\cfrac{q^3}{1+\cdots}}}}\)

 

 

 

모듈라 성질
  • 로저스-라마누잔 함수는 약간의 수정을 통해 modularity를 가짐
    \(q^{-1/60}G(q) = q^{-1/60}\sum_{n=0}^\infty \frac {q^{n^2}} {(q;q)_n} = \frac {q^{-1/60}}{(q;q^5)_\infty (q^4; q^5)_\infty}\)
    \(q^{11/60}H(q) =q^{11/60}\sum_{n=0}^\infty \frac {q^{n^2+n}} {(q;q)_n} = q^{11/60}\frac {1}{(q^2;q^5)_\infty (q^3; q^5)_\infty} \)
  •  
  • 데데킨트 에타함수가 갖는 modularity와의 유사성
    \(\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1-q^{n})\)
     
로저스-라마누잔 모듈라 함수

\(r(\tau)=q^{\frac{1}{5}} \frac{H(q)}{G(q)} = \cfrac{q^{\frac{1}{5}}}{1+\cfrac{q}{1+\cfrac{q^2}{1+\cfrac{q^3}{1+\cdots}}}}\)

 

여기서 \(q=e^{2\pi i\tau}\).

\(\tau=i\) 인 경우에 값을 계산할 수 있다면, 위의 값을 얻을 수 있다.

\(r(i)=\cfrac{e^{\frac{-2\pi}{5}}}{1+\cfrac{e^{-2\pi}}{1+\cfrac{e^{-4\pi}}{1+\cfrac{e^{-6\pi}}{1+\cdots}}}}\)

  • 모듈라 군(modular group) \(\Gamma(5)\)에 의해 불변이다
    \(r(\tau)=q^{\frac{1}{5}} \frac{H(q)}{G(q)} = \cfrac{q^{\frac{1}{5}}}{1+\cfrac{q}{1+\cfrac{q^2}{1+\cfrac{q^3}{1+\cdots}}}}\)

 

(정리)

\(r(\tau+1)=Sr(\tau)=\zeta_5r(\tau)\)

\(r(-\frac{1}{\tau})=Tr(\tau)\)

여기서 \(S=\begin{pmatrix} \zeta_{10} & 0 \\ 0 & \zeta_{10} \end{pmatrix} \), \(T={\begin{pmatrix} -1 & g \\ g & 1 \end{pmatrix}}\),  \(g=\frac{\sqrt{5}-1}{2}\)

 

 

푸리에급수
  • 로저스-라마누잔 항등식으로부터 푸리에급수를 유도할 수 있다
    \(r(\tau)=q^{\frac{1}{5}} \frac{H(q)}{G(q)} =q^{\frac{1}{5}}\frac {(q;q^5)_\infty (q^4; q^5)_\infty}{(q^2;q^5)_\infty (q^3; q^5)_\infty} \)
    \(r(\tau) = q^{1/5}(1 - q + q^2 - q^4 + q^5 - q^6 + q^7 - q^9 + 2q^{10} - 3q^{11}+\cdots\)

 

 

데데킨트 \(\eta\) 함수와의 관계

\(\frac{1}{r(5\tau)}-r(5\tau)-1=\frac{\eta(\tau)}{\eta(25\tau)}\)

\(\frac{1}{r(-\frac{1}{5\tau})}-r(-\frac{1}{5\tau})-1=\frac{\eta(-\frac{1}{25\tau})}{\eta(-\frac{1}{\tau})}\)

 

  • 에타함수의 modularity

\(\eta(-\frac{1}{\tau}) =\sqrt{\frac{\tau}{i}}\eta(\tau)\)

\(\eta(-\frac{1}{25\tau}) =\sqrt{\frac{25\tau}{i}}\eta(25\tau)\)

\(\frac{\eta(\tau)}{\eta(25\tau)}\frac{\eta(-\frac{1}{25\tau})}{\eta(-\frac{1}{\tau})}=5\)

  • 양변을 곱하여 다음 식을 얻는다.

\((\frac{1}{r(5\tau)}-r(5\tau)-1)(\frac{1}{r(-\frac{1}{5\tau})}-r(-\frac{1}{5\tau})-1)=5\)

 

\(\tau=\frac{i}{5}\) 인 경우, \((\frac{1}{r(i)}-r(i)-1)^2=5\) 를 얻고, 방정식을 풀 수 있음.

 

\(r(i)={\sqrt{5+\sqrt{5}\over 2}-{\sqrt{5}+1\over 2}}\)

 

 

special values
  • edge points
    \(r(\frac{a\cdot i+b}{c\cdot i+d})\)는 edge points 즉 \(E=(z_1^{30}+z_2^{30})+522(z_1^{25}z_2^{5}-z_1^{5}z_2^{25})-10005(z_1^{20}z_2^{10}+z_1^{10}z_2^{20})\)의 해이다. 
    \(r(i)={\sqrt{5+\sqrt{5}\over 2}-{\sqrt{5}+1\over 2}}\)
  • face points
    \(r(\frac{a\cdot \rho+b}{c\cdot \rho+d})\)  는 face points 즉 \(F=-(z_1^{20}+z_2^{20})+228(z_1^{15}z_2^{5}-z_1^{5}z_2^{15})-494z_1^{10}z_2^{10}\)의 해이다. 
    \(r(\rho)=e^{-\frac{\pi i}{5}}\frac{\sqrt{30+6\sqrt{5}}-3-\sqrt{5}}{4}\)
  • vertex points
    \(5\not | d\) 일 때, \(r(\frac{a\cdot 0 +b}{c\cdot 0+d})=r(\frac{b}{d})\) 는 vertex points 즉 \(V=z_1z_2(z_1^{10}+11z_1^5z_2^5-z_2^{10})\)의 해이다. 
  • 위에서 \(z=[z_1:z_2]=\frac{z_1}{z_2}\) 로 이해한다 

 

 

j-invariant 와의 관계

(정리)

\((r(\tau)^{20}-228r(\tau)^{15}+494r(\tau)^{10}+228r(\tau)^{5}+1)^3+j(\tau)r(\tau)^{5}(r(\tau)^{10}+11r(\tau)^{5}-1)^5=0\)

여기서, \(j(\tau)\) 는 j-invariant

 

(증명)

오차방정식과 정이십면체 에서 얻은 다음 결과들을 사용하자. 

\(V=z_1z_2(z_1^{10}+11z_1^5z_2^5-z_2^{10})\)

\(E=(z_1^{30}+z_2^{30})+522(z_1^{25}z_2^{5}-z_1^{5}z_2^{25})-10005(z_1^{20}z_2^{10}+z_1^{10}z_2^{20})\)

\(F=-(z_1^{20}+z_2^{20})+228(z_1^{15}z_2^{5}-z_1^{5}z_2^{15})-494z_1^{10}z_2^{10}\)

\(1728V^5-E^2-F^3=0\)

\(J(z)=1728-\frac{E(z)^2}{V(z)^5}=\frac{F(z)^3}{V(z)^5}= -\frac{(z^{20}-228z^{15}+494z^{10}+228z^{5}+1)^3}{z^{5}(z^{10}+11z^{5}-1)^5}\)는 군 \(\Gamma=<S,T>\)에 의해 불변이다. 

따라서 

\(J(r(\tau))=-\frac{(r(\tau)^{20}-228r(\tau)^{15}+494r(\tau)^{10}+228r(\tau)^{5}+1)^3}{r(\tau)^{5}(r(\tau)^{10}+11r(\tau)^{5}-1)^5}\) 는 모듈라 군(modular group)에 의하여 불변이고, 모듈라 함수가 된다.

즉, \(g\in\Gamma\)에 대하여 \(J(r(g\tau))=J(r(\tau))\)가 성립한다. 

한편 \(\tau\in\mathbb{H}\) 일때  \(V(r(\tau))\neq0 \)이므로,  \(J(r(\tau))\)는 \(\tau\in\mathbb{H}\)에 대하여 해석함수가 된다. 

\(J(z)=\frac{F(z)^3}{V(z)^5}=-\frac{(z^{20}-228z^{15}+494z^{10}+228z^{5}+1)^3}{z^{5}(z^{10}+11z^{5}-1)^5}\) 로부터 \(J(r(\tau))\)는  \(\tau=i\infty\)에서 단순pole을 가지며, \(J(r(i))=1728\), \(J(r(\rho))=0\) 임도 알 수 있다. 

따라서  \(J(r(\tau))\)는 타원 모듈라 j-함수 (j-invariant)이다.  ■

 

 

재미있는 사실

 

관련된 단원

 

 

많이 나오는 질문

 

관련된 고교수학 또는 대학수학

 

 

관련된 다른 주제들

 

 

 

관련도서 및 추천도서

 

 

관련논문

 

 

관련기사

 

 

블로그