쌍곡기하학

수학노트
이동: 둘러보기, 검색

개요

  • 일반적으로 비유클리드 기하학을 말할때 지칭하는 기하학
  • 쌍곡평면에서는 한 직선\(\ell\)과 그 직선 위에 있지 않은 한 점\(P\)가 주어져 있을때, \(P\)를 지나는 \(\ell\)과 평행한 직선이 무수히 많이 존재
  • 곡률이 음인 공간에서의 기하학을 지칭하는 말
  • 곡률이 음인 공간은 3차원 상에서 각 점이 말안장처럼 보이게 된다
  • 쌍곡면은 쌍곡기하학의 모델을 제공하므로 쌍곡기하학이라 부르게 되었다


쌍곡기하학의 두가지 모델

푸앵카레 상반평면 모델


푸앵카레 unit disk 모델

\[U=\{z=x+iy:|z|=\sqrt{x^2+y^2} < 1 \}\] \[ds^2=\frac{dx^2+dy^2}{(1-(x^2+y^2))^2}=\frac{dz\,d\overline{z}}{(1-|z|^2)^2}\]

쌍곡기하학의 테셀레이션

  • (2,3,7)-삼각형을 이용한 테셀레이션
  • (2,3,7)이란 삼각형의 세 각이 각각 \[\frac{\pi}{7},\frac{\pi}{3},\frac{\pi}{2}\]

라는 것을 말한다. 이 세각의 크기를 모두 더하면,\[\frac{\pi}{7}+\frac{\pi}{3}+\frac{\pi}{2}=\frac{41\pi}{42}\] 가 되어, 180도보다 작게 됨을 알 수 있다. 쌍곡기하학에서의 곡률은 음수이기 때문에 나타나는 현상이다. 3065168-H2PlaneLines med.jpg


역사

  • 1824년 가우스의 쌍곡기하학에 대한 연구
  • 1829년 로바체프스키 쌍곡기하학에 대한 출판
  • 1832년 볼리아이
  • 1868년 벨트라미는 비유클리드 기하학이 음의 곡률을 갖는 곡면위의 기하학임을 보임
  • [Milnor1982]
  • 수학사 연표




관련된 항목들



사전 형태의 자료



리뷰, 에세이, 강의노트

관련도서



블로그