"타원곡선 y²=x³-x"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
41번째 줄: 41번째 줄:
 
<h5 style="margin: 0px; line-height: 2em;">periods</h5>
 
<h5 style="margin: 0px; line-height: 2em;">periods</h5>
  
*  주기<br><math>2\omega=4\int_0^1\frac{dx}{\sqrt{1-x^4}}=B(1/2,1/4)=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}=\frac{\Gamma(1/4)^2}{\sqrt{2\pi}}=5.24\cdots</math><br><math>2\int_0^1\frac{dx}{\sqrt{x-x^3}}=B(1/2,1/4)=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}=5.24\cdots</math><br>
+
 <br> 주기<br>  <br><math>e_1=1, e_2=0, e_3=-1</math>로 두자<br><math>\omega_1=2\int_{1}^{\infty}\frac{dx}{\sqrt{x^3-x}}=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}=5.24\cdots</math><br><math>\omega_2=2i\int_0^1\frac{dx}{\sqrt{x-x^3}}=2i\int_{\infty}^1\frac{-dy}{\sqrt{y^3-y}}=i\omega_{1}</math><br>
 
* [[모듈라 군, j-invariant and the singular moduli]] 의 special values 부분과 비교
 
* [[모듈라 군, j-invariant and the singular moduli]] 의 special values 부분과 비교
 +
*  
 +
* http://www.wolframalpha.com/input/?i=integrate_1^{infty}+1/sqrt(x^3-x)+dx
 +
* [[#]]
 +
 +
 
  
 
 
 
 
128번째 줄: 133번째 줄:
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료</h5>
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료</h5>
  
 +
*   <br>
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
* http://www.wolframalpha.com/input/?i=
 
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>

2010년 7월 13일 (화) 16:17 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 타원곡선 \(y^2=x^3-x\)의 예를 통한 여러가지 타원곡선과 관련한 개념의 이해

 

 

판별식과 conductor
  • 판별식 \(\Delta=64\)
  • conductor \(N=32\)

 

 

실수해

[/pages/2061314/attachments/2299029 ]

 

 

유리수해
  • \(E(\mathbb Q)=\{(\infty,\infty), (0,0),(1,0),(-1,0)\} \simeq \frac{\mathbb Z}{2\mathbb Z}\oplus \frac{\mathbb Z}{2\mathbb Z}\)
  • rank 는 0

 

 

periods

 

 

 

 

 

유한체에서의 해의 개수
  • 유한체에서의 해의 개수
    \(E(\mathbb{F}_p)=\{(x,y)\in \mathbb{F}_p^2|E: y^2=x^3-x\}\cup \{(\infty,\infty})\}\)
    \(M_p=\#E(\mathbb{F}_p)\)
    \(a_p=p+1-M_p\)
  • 아래 표 참조

 

 

제타함수
  • 대수적다양체의 제타함수 항목 참조
  • 로컬제타함수
    \(p\neq 2\) 인 경우
    \(Z_p(T)=\frac{1-a_pT+pT^2}{(1 - T)(1- pT)}\)
    \(p= 2\)인 경우
    \(Z_2(T)=\frac{1-a_2T}{(1 - T)(1- 2T)}=\frac{1}{(1 - T)(1- 2T)}\)

 

 

모듈라 형식
  • 모듈라 형식
    \(f(\tau)={\eta(4\tau)^2\eta(8\tau)^2}=q\prod_{n=1}^{\infty} (1-q^{4n})^2(1-q^{8n})^2=\sum_{n=1}^{\infty}c_nq^n=q - 2 q^{5 }-3q^9+6q^{13}+2q^{17}+\cdots\)
    \(\eta(\tau)\)는 데데킨트 에타함수

  • \( \begin{array}{ccc} {p} & {a_p} & {c_p} \\ 2 & 0 & 0 \\ 3 & 0 & 0 \\ 5 & -2 & -2 \\ 7 & 0 & 0 \\ 11 & 0 & 0 \\ 13 & 6 & 6 \\ 17 & 2 & 2 \\ 19 & 0 & 0 \\ 23 & 0 & 0 \\ 29 & -10 & -10 \\ 31 & 0 & 0 \\ 37 & -2 & -2 \\ 41 & 10 & 10 \\ 43 & 0 & 0 \\ 47 & 0 & 0 \\ 53 & 14 & 14 \\ 59 & 0 & 0 \\ 61 & -10 & -10 \\ 67 & 0 & 0 \\ 71 & 0 & 0 \end{array} \)

 

 

재미있는 사실

 

 

 

역사

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그