"드 무아브르의 정리, 복소수와 정다각형"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
<h5>간단한 소개</h5>
 
<h5>간단한 소개</h5>
 +
 +
(정리) 드 무아브르
  
 
<math>(\cos \theta + i \sin \theta)^n=\cos n\theta + i \sin n\theta</math>
 
<math>(\cos \theta + i \sin \theta)^n=\cos n\theta + i \sin n\theta</math>
 +
 +
여기서 <math>\theta</math> 는 임의의 실수, <math>n</math> 은 임의의 정수
 +
 +
 
 +
 +
 
 +
 +
<h5>증명</h5>
 +
 +
*  
 +
 +
 
 +
 +
 
  
 
 
 
 
7번째 줄: 23번째 줄:
 
<h5>정다각형과의 관계</h5>
 
<h5>정다각형과의 관계</h5>
  
* <math>z^n=1</math> 를 만족시키는 복소수 방정식을 풀면, n개의 해는 복소평면에서 정n각형의 꼭지점이 된다.
+
* <math>z^n=1</math> 를 만족시키는 복소수 방정식을 풀면, n개의 해는 복소평면에서 정n각형의 꼭지점이 된다.<br> 방정식을 풀기 위해, <math>z=\cos \theta + i \sin \theta</math> 로 두고 드무아브르 정리를 적용하자.<br><math>(\cos \theta + i \sin \theta)^n=\cos n\theta + i \sin n\theta=1</math><br><math>\theta=\frac{2k\pi}{n}, k=0,1,\cdots,n-1</math><br>  <br>
*  
 
* <math>(\cos \theta + i \sin \theta)^n=\cos n\theta + i \sin n\theta=1</math>
 
 
* <math>z^3=1</math> 의 해는, <math>1,\frac{-1+\sqrt{-3}}{2}, \frac{-1-\sqrt{-3}}{2}</math> 세 개가 있다. 이를 복소평면에 점으로 나타내면, 다음과 같이 정삼각형의 꼭지점을 이룬다.<br>[/pages/3002568/attachments/1344206 img602.gif]<br>
 
* <math>z^3=1</math> 의 해는, <math>1,\frac{-1+\sqrt{-3}}{2}, \frac{-1-\sqrt{-3}}{2}</math> 세 개가 있다. 이를 복소평면에 점으로 나타내면, 다음과 같이 정삼각형의 꼭지점을 이룬다.<br>[/pages/3002568/attachments/1344206 img602.gif]<br>
  
76번째 줄: 90번째 줄:
  
 
* [http://ko.wikipedia.org/wiki/%EB%B3%B5%EC%86%8C%EC%88%98 http://ko.wikipedia.org/wiki/복소수]
 
* [http://ko.wikipedia.org/wiki/%EB%B3%B5%EC%86%8C%EC%88%98 http://ko.wikipedia.org/wiki/복소수]
* http://en.wikipedia.org/wiki/
+
* http://en.wikipedia.org/wiki/De_Moivre
 +
* [http://en.wikipedia.org/wiki/De_Moivre%27s_formula http://en.wikipedia.org/wiki/De_Moivre's_formula]
 
* http://viswiki.com/en/
 
* http://viswiki.com/en/
 
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
 
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=

2009년 5월 8일 (금) 06:57 판

간단한 소개

(정리) 드 무아브르

\((\cos \theta + i \sin \theta)^n=\cos n\theta + i \sin n\theta\)

여기서 \(\theta\) 는 임의의 실수, \(n\) 은 임의의 정수

 

 

증명
  •  

 

 

 

정다각형과의 관계
  • \(z^n=1\) 를 만족시키는 복소수 방정식을 풀면, n개의 해는 복소평면에서 정n각형의 꼭지점이 된다.
    방정식을 풀기 위해, \(z=\cos \theta + i \sin \theta\) 로 두고 드무아브르 정리를 적용하자.
    \((\cos \theta + i \sin \theta)^n=\cos n\theta + i \sin n\theta=1\)
    \(\theta=\frac{2k\pi}{n}, k=0,1,\cdots,n-1\)
     
  • \(z^3=1\) 의 해는, \(1,\frac{-1+\sqrt{-3}}{2}, \frac{-1-\sqrt{-3}}{2}\) 세 개가 있다. 이를 복소평면에 점으로 나타내면, 다음과 같이 정삼각형의 꼭지점을 이룬다.
    [/pages/3002568/attachments/1344206 img602.gif]

 

 

 

 

하위페이지

 

 

재미있는 사실

 

 

많이 나오는 질문

 

관련된 고교수학 또는 대학수학

 

관련된 다른 주제들

 

관련도서 및 추천도서

 

참고할만한 자료

 

관련기사

 

 

블로그

 

이미지 검색

 

동영상