"Chowla-셀베르그 공식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
90번째 줄: 90번째 줄:
 
* Yang, T. (2010). The Chowla-Selberg formula and the Colmez conjecture. Canad. J. Math, 62(2), 456-472. http://www.math.wisc.edu/~thyang/ColmezConjectureFinal2010.pdf
 
* Yang, T. (2010). The Chowla-Selberg formula and the Colmez conjecture. Canad. J. Math, 62(2), 456-472. http://www.math.wisc.edu/~thyang/ColmezConjectureFinal2010.pdf
 
* Van der Poorten, Alfred, and Kenneth S. Williams. 1999. “Values of the Dedekind Eta Function at Quadratic Irrationalities.” Canadian Journal of Mathematics. Journal Canadien de Mathématiques 51 (1): 176–224. doi:10.4153/CJM-1999-011-1.
 
* Van der Poorten, Alfred, and Kenneth S. Williams. 1999. “Values of the Dedekind Eta Function at Quadratic Irrationalities.” Canadian Journal of Mathematics. Journal Canadien de Mathématiques 51 (1): 176–224. doi:10.4153/CJM-1999-011-1.
 +
* Anderson, G. W. (1982). [http://archive.numdam.org/ARCHIVE/CM/CM_1982__45_3/CM_1982__45_3_315_0/CM_1982__45_3_315_0.pdf
 +
Logarithmic derivatives of Dirichlet $ L $-functions and the periods of abelian varieties]. Compositio Mathematica, 45(3), 315-332.
 
* Benedict H. Gross [http://dx.doi.org/10.1007/BF01390273 On the periods of abelian integrals and a formula of Chowla and Selberg], Inventiones Mathematicae, Volume 45, Number 2 / 1978년 6월
 
* Benedict H. Gross [http://dx.doi.org/10.1007/BF01390273 On the periods of abelian integrals and a formula of Chowla and Selberg], Inventiones Mathematicae, Volume 45, Number 2 / 1978년 6월
 
* S. Chowla; A. Selberg, [http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=PPN243919689_0227&DMDID=dmdlog8 On Epstein's Zeta-function], J. reine angew. Math. 227, 86-110, 1967
 
* S. Chowla; A. Selberg, [http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=PPN243919689_0227&DMDID=dmdlog8 On Epstein's Zeta-function], J. reine angew. Math. 227, 86-110, 1967
 
* S. Chowla and A. Selberg [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1063041/ On Epstein's Zeta Function (I)] Proc Natl Acad Sci U S A. 1949 July; 35(7): 371–374
 
* S. Chowla and A. Selberg [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1063041/ On Epstein's Zeta Function (I)] Proc Natl Acad Sci U S A. 1949 July; 35(7): 371–374
 
* Max F. Deuring [http://www.jstor.org/stable/1968602 On Epstein's Zeta Function], The Annals of Mathematics, Second Series, Vol. 38, No. 3 (Jul., 1937), pp. 585-593
 
* Max F. Deuring [http://www.jstor.org/stable/1968602 On Epstein's Zeta Function], The Annals of Mathematics, Second Series, Vol. 38, No. 3 (Jul., 1937), pp. 585-593
 
  
 
==관련도서==
 
==관련도서==
 
* [http://books.google.com/books?id=voR95sDdb_MC Elliptic Functions According to Eisenstein and Kronecker] A.Weil, Springer, 1998
 
* [http://books.google.com/books?id=voR95sDdb_MC Elliptic Functions According to Eisenstein and Kronecker] A.Weil, Springer, 1998
 
[[분류:타원적분]]
 
[[분류:타원적분]]

2014년 1월 28일 (화) 04:16 판

개요



Epstein 제타함수

\[\zeta_Q(s) =\sum_{(X,Y)\ne (0,0)}\frac{1}{(aX^2+bXY+cy^2)^s}\]



제1종 타원적분

\[\frac{K'}{K}(\frac{1}{\sqrt{2}})= 1 \Rightarrow K(\frac{1}{\sqrt{2}})=\frac{1}{4}B(1/4,1/4)=\frac{\Gamma(\frac{1}{4})^2}{4\sqrt{\pi}}=1.8540746773\cdots\] \[\frac{K'}{K}(\sqrt{2}-1)= \sqrt{2} \Rightarrow K(\sqrt{2}-1)=\frac{\sqrt{\sqrt{2}+1}}{2^{13/4}}B(\frac{1}{8},\frac{3}{8})=\frac{\sqrt{\sqrt{2}+1}\Gamma(\frac{1}{8})\Gamma(\frac{3}{8})}{2^{13/4}\sqrt{\pi}}\] \[\frac{K'}{K}\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)= \sqrt{3} \Rightarrow K\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{4\sqrt[4]{3}\sqrt{\pi}}=1.5981420\cdots\]

  • lemniscate 곡선의 길이와 타원적분\[4\int_0^1\frac{dx}{\sqrt{1-x^4}}=B(\frac{1}{2},\frac{1}{4})=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}=\frac{\Gamma(1/4)^2}{\sqrt{2\pi}}=5.24\cdots\]
  • 제1종타원적분 K (complete elliptic integral of the first kind)\[\int_0^1\frac{dx}{\sqrt{1-x^3}}=\frac{1}{3}B(\frac{1}{2},\frac{1}{3})=\frac{1}{6}B(\frac{1}{3},\frac{1}{6})\]\[6\int_{0}^{1} \frac{dx}{\sqrt{1-x^3}}=B(\frac{1}{3},\frac{1}{6})=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{\Gamma(\frac{1}{2})}=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{\sqrt{\pi}}=8.413\cdots\]



Chowla-셀베르그의 정리

정리

$k$에 대하여, 다음의 값 \[i\frac{K'}{K}(k):=i\frac{K(\sqrt{1-k^2})}{K(k)}\] 이 \(d_F\)를 판별식으로 갖는 복소이차수체 \(F=\mathbb{Q}(\sqrt{d_F})\)의 원소일 때, 제1종타원적분 K에 대하여 다음이 성립한다 \[{K}(k)=\lambda\sqrt{\pi}\left(\prod_{m=1}^{|d_F|}\Gamma(\frac{m}{|d_F|})^{\left(\frac{d_F}{m}\right)}\right)^{\frac{w_{F}}{4h_{F}}}\] 여기서 \(\lambda\)는 적당한 대수적수.


특수한 경우

\[\frac{2K(k)}{\pi}=\frac{2^{1/3}(kk')^{-1/6}}{\sqrt{2\pi p}}\left(\prod_{m=1}^{|d_F|}\Gamma(\frac{m}{|d_F|})^{\left(\frac{d_F}{m}\right)}\right)^{w_{F}/4}\] 여기서 $k$는 \(\frac{K'}{K}(k)=\sqrt{p}\)의 해이고, $k'=\sqrt{1-k^2}$.

  • \(p=3\)인 경우

\[\frac{2K\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)}{\pi}=\frac{2^{2/3}}{\sqrt{6\pi}}\left(\frac{\Gamma(\frac{1}{3})}{\Gamma(\frac{2}{3})}\right)^{3/2}\]

  • \(p=7\)인 경우

\[\frac{2K\left(\frac{1}{4} \sqrt{8-3 \sqrt{7}}\right)}{\pi}=\frac{2}{\sqrt{14\pi}}\sqrt{\frac{\Gamma(\frac{1}{7})\Gamma(\frac{2}{7})\Gamma(\frac{4}{7})}{\Gamma(\frac{3}{7})\Gamma(\frac{5}{7})\Gamma(\frac{6}{7})}}\]



메모

  • p-adic case Gross-Koblitz form



관련된 항목들


매스매티카 파일 및 계산 리소스


사전 형태의 자료


리뷰, 에세이, 강의노트


관련논문

Logarithmic derivatives of Dirichlet $ L $-functions and the periods of abelian varieties]. Compositio Mathematica, 45(3), 315-332.

관련도서