"수학사 연표"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(같은 사용자의 중간 판 하나는 보이지 않습니다)
56번째 줄: 56번째 줄:
  
 
* [http://en.wikipedia.org/wiki/1706 1706] - 마친, [[#|마친(Machin)의 공식]]을 활용하여 파이값 100자리까지 계산
 
* [http://en.wikipedia.org/wiki/1706 1706] - 마친, [[#|마친(Machin)의 공식]]을 활용하여 파이값 100자리까지 계산
* [http://en.wikipedia.org/wiki/1712 1712] - [http://en.wikipedia.org/wiki/Brook_Taylor Brook Taylor] develops [http://en.wikipedia.org/wiki/Taylor_series Taylor series],
+
* [http://en.wikipedia.org/wiki/1712 1712] - 브룩 테일러의 테일러 급수
 
* [http://en.wikipedia.org/wiki/1722 1722] - [[#|드 무아브르의 정리, 복소수와 정다각형]] 발견
 
* [http://en.wikipedia.org/wiki/1722 1722] - [[#|드 무아브르의 정리, 복소수와 정다각형]] 발견
 
* [http://en.wikipedia.org/wiki/1724 1724] - Abraham De Moivre studies mortality statistics and the foundation of the theory of annuities in <em style="">Annuities on Lives</em>,
 
* [http://en.wikipedia.org/wiki/1724 1724] - Abraham De Moivre studies mortality statistics and the foundation of the theory of annuities in <em style="">Annuities on Lives</em>,
122번째 줄: 122번째 줄:
 
* [http://en.wikipedia.org/wiki/1859 1859] - 리만이 [[리만가설]]을 발표
 
* [http://en.wikipedia.org/wiki/1859 1859] - 리만이 [[리만가설]]을 발표
 
* [http://en.wikipedia.org/wiki/1870 1870] - [http://en.wikipedia.org/wiki/Felix_Klein Felix Klein] constructs an analytic geometry for Lobachevski's geometry thereby establishing its self-consistency and the logical independence of Euclid's fifth postulate,
 
* [http://en.wikipedia.org/wiki/1870 1870] - [http://en.wikipedia.org/wiki/Felix_Klein Felix Klein] constructs an analytic geometry for Lobachevski's geometry thereby establishing its self-consistency and the logical independence of Euclid's fifth postulate,
* [http://en.wikipedia.org/wiki/1873 1873] - [http://en.wikipedia.org/wiki/Charles_Hermite ]에르미트가 [[#|자연상수 e는 초월수]] 임을 증명
+
* [http://en.wikipedia.org/wiki/1873 1873] - 에르미트가 [[#|자연상수 e는 초월수]] 임을 증명
 
* [http://en.wikipedia.org/wiki/1873 1873] - 프로베니우스([http://en.wikipedia.org/wiki/Georg_Frobenius Georg Frobenius])가 [[정규특이점(regular singular points)]]을 가지는 선형미분방정식의 급수해 찾는 방법을 소개함
 
* [http://en.wikipedia.org/wiki/1873 1873] - 프로베니우스([http://en.wikipedia.org/wiki/Georg_Frobenius Georg Frobenius])가 [[정규특이점(regular singular points)]]을 가지는 선형미분방정식의 급수해 찾는 방법을 소개함
 
* [http://en.wikipedia.org/wiki/1874 1874] - [http://en.wikipedia.org/wiki/Georg_Cantor Georg Cantor] shows that the set of all [http://en.wikipedia.org/wiki/Real_number real numbers] is [http://en.wikipedia.org/wiki/Uncountable uncountably infinite] but the set of all [http://en.wikipedia.org/wiki/Algebraic_number algebraic numbers] is [http://en.wikipedia.org/wiki/Countable countably infinite]. Contrary to widely held beliefs, his method was not his famous [http://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument diagonal argument], which he published three years later. (Nor did he formulate [http://en.wikipedia.org/wiki/Set_theory set theory] at this time.)
 
* [http://en.wikipedia.org/wiki/1874 1874] - [http://en.wikipedia.org/wiki/Georg_Cantor Georg Cantor] shows that the set of all [http://en.wikipedia.org/wiki/Real_number real numbers] is [http://en.wikipedia.org/wiki/Uncountable uncountably infinite] but the set of all [http://en.wikipedia.org/wiki/Algebraic_number algebraic numbers] is [http://en.wikipedia.org/wiki/Countable countably infinite]. Contrary to widely held beliefs, his method was not his famous [http://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument diagonal argument], which he published three years later. (Nor did he formulate [http://en.wikipedia.org/wiki/Set_theory set theory] at this time.)
148번째 줄: 148번째 줄:
 
* [http://en.wikipedia.org/wiki/1903 1903] - [http://en.wikipedia.org/wiki/Carle_David_Tolme_Runge Carle David Tolme Runge] presents a [http://en.wikipedia.org/wiki/Fast_Fourier_Transform fast Fourier Transform] algorithm,
 
* [http://en.wikipedia.org/wiki/1903 1903] - [http://en.wikipedia.org/wiki/Carle_David_Tolme_Runge Carle David Tolme Runge] presents a [http://en.wikipedia.org/wiki/Fast_Fourier_Transform fast Fourier Transform] algorithm,
 
* [http://en.wikipedia.org/wiki/1903 1903] - [http://en.wikipedia.org/wiki/Edmund_Georg_Hermann_Landau Edmund Georg Hermann Landau] gives considerably simpler proof of the prime number theorem.
 
* [http://en.wikipedia.org/wiki/1903 1903] - [http://en.wikipedia.org/wiki/Edmund_Georg_Hermann_Landau Edmund Georg Hermann Landau] gives considerably simpler proof of the prime number theorem.
* [http://en.wikipedia.org/wiki/1905 1905]  [http://en.wikipedia.org/wiki/Albert_Einstein ]아인슈타인 특수상대성 이론 발표
+
* [http://en.wikipedia.org/wiki/1905 1905]  아인슈타인 특수상대성 이론 발표
 
* [http://en.wikipedia.org/wiki/1908 1908] - [http://en.wikipedia.org/wiki/Ernst_Zermelo Ernst Zermelo] axiomizes [http://en.wikipedia.org/wiki/Set_theory set theory], thus avoiding Cantor's contradictions,
 
* [http://en.wikipedia.org/wiki/1908 1908] - [http://en.wikipedia.org/wiki/Ernst_Zermelo Ernst Zermelo] axiomizes [http://en.wikipedia.org/wiki/Set_theory set theory], thus avoiding Cantor's contradictions,
 
* [http://en.wikipedia.org/wiki/1908 1908] - [http://en.wikipedia.org/wiki/Josip_Plemelj Josip Plemelj] solves the Riemann problem about the existence of a differential equation with a given [http://en.wikipedia.org/wiki/Monodromic_group monodromic group] and uses Sokhotsky - Plemelj formulae,
 
* [http://en.wikipedia.org/wiki/1908 1908] - [http://en.wikipedia.org/wiki/Josip_Plemelj Josip Plemelj] solves the Riemann problem about the existence of a differential equation with a given [http://en.wikipedia.org/wiki/Monodromic_group monodromic group] and uses Sokhotsky - Plemelj formulae,

2012년 7월 18일 (수) 12:25 판

 

15세기

 

 

 

16세기
  • 1545년 카르다노가 'Ars Magna' 를 출판

 

 

17세기

 

 


18세기


 

 

19세기


 

 

20세기

 

 

중요 수학 저술

 

 

 

관련링크와 웹페이지

 

관련도서

 

사전형태의 자료