"로저스-라마누잔 항등식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
156번째 줄: 156번째 줄:
 
* Berndt, Bruce C. Ramanujan's forty identities for the Rogers-Ramanujan functions. Vol. 181. American Mathematical Soc., 2007. http://personal.psu.edu/auy2/articles/fortyidentity.pdf
 
* Berndt, Bruce C. Ramanujan's forty identities for the Rogers-Ramanujan functions. Vol. 181. American Mathematical Soc., 2007. http://personal.psu.edu/auy2/articles/fortyidentity.pdf
 
* Gugg, Chadwick. “Modular Identities for the Rogers-Ramanujan Functions and Analogues.” University of Illinois at Urbana-Champaign, 2011. https://www.ideals.illinois.edu/handle/2142/18485.
 
* Gugg, Chadwick. “Modular Identities for the Rogers-Ramanujan Functions and Analogues.” University of Illinois at Urbana-Champaign, 2011. https://www.ideals.illinois.edu/handle/2142/18485.
* [http://dx.doi.org/10.1155/2009/941920 Probabilities as Values of Modular Forms and Continued Fractions]
+
* Masri, Riad, and Ken Ono. “Probabilities as Values of Modular Forms and Continued Fractions.” International Journal of Mathematics and Mathematical Sciences 2009 (September 15, 2009): e941920. doi:[http://dx.doi.org/10.1155/2009/941920 10.1155/2009/941920].
** Riad Masri and Ken Ono, 2009
 
 
* [http://www.ams.org/bull/2005-42-02/S0273-0979-05-01047-5/home.html#References Continued fractions and modular functions]
 
* [http://www.ams.org/bull/2005-42-02/S0273-0979-05-01047-5/home.html#References Continued fractions and modular functions]
 
** W. Duke, Bull. Amer. Math. Soc. 42 (2005), 137-162
 
** W. Duke, Bull. Amer. Math. Soc. 42 (2005), 137-162
* [http://arxiv.org/abs/math/0309201 Ramanujan's "Lost Notebook" and the Virasoro Algebra]
+
* Milas, Antun. “Ramanujan’s ‘Lost Notebook’ and the Virasoro Algebra.” Communications in Mathematical Physics 251, no. 3 (November 2004): 567–88. doi:10.1007/s00220-004-1179-3. http://arxiv.org/abs/math/0309201
** Antun Milas, Commun.Math.Phys. 251 (2004) 567-588
 
 
* [http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.5875 Ramanujan’s formulas for the explicit evaluation of the Rogers–Ramanujan continued fraction and theta-functions]
 
* [http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.5875 Ramanujan’s formulas for the explicit evaluation of the Rogers–Ramanujan continued fraction and theta-functions]
 
** Soon-Yi Kang, ACTA ARITHMETICA XC.1 (1999)
 
** Soon-Yi Kang, ACTA ARITHMETICA XC.1 (1999)
170번째 줄: 168번째 줄:
 
* '''[McIntosh1995]'''[http://jlms.oxfordjournals.org/cgi/content/abstract/51/1/120 Some Asymptotic Formulae for q-Hypergeometric Series]
 
* '''[McIntosh1995]'''[http://jlms.oxfordjournals.org/cgi/content/abstract/51/1/120 Some Asymptotic Formulae for q-Hypergeometric Series]
 
** Richard J. McIntosh, Journal of the London Mathematical Society 1995 51(1):120-136
 
** Richard J. McIntosh, Journal of the London Mathematical Society 1995 51(1):120-136
 
* [http://www.jstor.org/stable/2325145 A Motivated Proof of the Rogers-Ramanujan Identities]
 
** George E. Andrews and R. J. Baxter, <cite style="line-height: 2em;">The American Mathematical Monthly</cite>, Vol. 96, No. 5 (May, 1989), pp. 401-409
 
 
 
*  Watson, G. N.
 
*  Watson, G. N.
 
** [http://www.google.com/url?sa=t&ct=res&cd=1&url=http%3A%2F%2Fjlms.oxfordjournals.org%2Fcgi%2Freprint%2Fs1-4%2F3%2F231&ei=JY1hSLWRLpSY8gSI7JSiBQ&usg=AFQjCNElhd9FwCl3m3Qcb3hW7j87K1P5FQ&sig2=4OhMIB56amm8h4EOGNSk6g Theorems Stated by Ramanujan (IX): Two Continued Fractions.], 1929
 
** [http://www.google.com/url?sa=t&ct=res&cd=1&url=http%3A%2F%2Fjlms.oxfordjournals.org%2Fcgi%2Freprint%2Fs1-4%2F3%2F231&ei=JY1hSLWRLpSY8gSI7JSiBQ&usg=AFQjCNElhd9FwCl3m3Qcb3hW7j87K1P5FQ&sig2=4OhMIB56amm8h4EOGNSk6g Theorems Stated by Ramanujan (IX): Two Continued Fractions.], 1929

2015년 7월 30일 (목) 00:15 판

개요



로저스-라마누잔 항등식

  • 다음의 두 항등식을 로저스-라마누잔 항등식이라 부른다

\[G(q) = \sum_{n=0}^\infty \frac {q^{n^2}} {(q;q)_n} = \frac {1}{(q;q^5)_\infty (q^4; q^5)_\infty} =1+ q +q^2 +q^3 +2q^4+2q^5 +3q^6+\cdots\] \[H(q) =\sum_{n=0}^\infty \frac {q^{n^2+n}} {(q;q)_n} = \frac {1}{(q^2;q^5)_\infty (q^3; q^5)_\infty} =1+q^2 +q^3 +q^4+q^5 +2q^6+\cdots\]

\[(a;q)_n = \prod_{k=0}^{n-1} (1-aq^k)=(1-a)(1-aq)(1-aq^2)\cdots(1-aq^{n-1})\]



세타함수 표현과 모듈라 성질

  • 세타함수를 통한 표현

\[G(q)=\frac{1}{(q)_{\infty}}\sum_{n\in \mathbb{Z}}(-1)^n q^{(5n^2+n)/2}\] \[H(q)=\frac{1}{(q)_{\infty}}\sum_{n\in \mathbb{Z}}(-1)^n q^{(5n^2+3n)/2}\]

  • 로저스-라마누잔 함수는 약간의 수정을 통해 모듈라 성질을 갖게 됨

\[q^{-1/60}G(q) = q^{-1/60}\sum_{n=0}^\infty \frac {q^{n^2}} {(q;q)_n} = \frac {q^{-1/60}}{(q;q^5)_\infty (q^4; q^5)_\infty}\] \[q^{11/60}H(q) =q^{11/60}\sum_{n=0}^\infty \frac {q^{n^2+n}} {(q;q)_n} = \frac {q^{11/60}}{(q^2;q^5)_\infty (q^3; q^5)_\infty} \]

  • 모듈라 변환

$$f(\tau)=\left( \begin{array}{c} q^{-1/60}G(q) \\ q^{11/60} H(q) \\ \end{array} \right) $$ 로 두면, 다음이 성립한다 $$ f(\tau+1)= \left( \begin{array}{cc} \zeta_{60}^{-1} & 0 \\ 0 & \zeta_{60}^{11} \\ \end{array} \right)f(\tau) $$

$$ f(-\frac{1}{\tau}) = \frac{2}{\sqrt{5}} \left( \begin{array}{cc} \sin \left(\frac{2 \pi }{5}\right) & \sin \left(\frac{\pi }{5}\right) \\ \sin \left(\frac{\pi }{5}\right) & -\sin \left(\frac{2 \pi }{5}\right) \\ \end{array} \right)f(\tau) = \left( \begin{array}{cc} \sqrt{\frac{2}{5-\sqrt{5}}} & \sqrt{\frac{2}{5+\sqrt{5}}} \\ \sqrt{\frac{2}{5+\sqrt{5}}} & -\sqrt{\frac{2}{5-\sqrt{5}}} \\ \end{array} \right)f(\tau) $$



cusp에서의 변화

  • \(q=e^{-t}\) 으로 두면 \(t\sim 0\) 일 때,

\[H(q)=\sum_{n=0}^\infty \frac {q^{n^2+n}} {(q;q)_n} \sim \sqrt\frac{2}{5+\sqrt{5}}\exp(\frac{\pi^2}{15t}+\frac{11t}{60})+o(1)\] \[G(q)=\sum_{n=0}^\infty \frac {q^{n^2}} {(q;q)_n} \sim \sqrt\frac{2}{5-\sqrt{5}}\exp(\frac{\pi^2}{15t}-\frac{t}{60})+o(1)\]

  • [McIntosh1995] 참조
  • 이로부터 \(t\to 0\) 일 때, \(q=e^{-t}\to 1\) 으로 다음이 성립함을 알 수 있다

\[\frac{H(1)}{G(1)} = \sqrt{\frac{5-\sqrt{5}}{5+\sqrt{5}}}=\varphi-1=0.618\cdots\]



로저스-라마누잔 연분수

  • 두 함수의 비는 아래와 같은 연분수 표현을 가진다

\[\frac{H(q)}{G(q)} = \cfrac{1}{1+\cfrac{q}{1+\cfrac{q^2}{1+\cfrac{q^3}{1+\cdots}}}}\]




재미있는 사실



관련된 항목들



매스매티카 파일 및 계산 리소스


사전형태의 자료



관련도서



관련논문

블로그