"감마함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 2명의 중간 판 68개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5>정의</h5>
+
==개요==
  
* <math>\Gamma(s) = \int_0^\infty e^{-t} t^{s} \frac{dt}{t}</math>
+
* 팩토리얼 함수의 정의역을 복소수로 확장하는 함수이다.
* <math>\Gamma(s+1) =s\Gamma(s)</math>
+
* 자연수에 대해 팩토리얼과 같은 값을 가지면서 <math>s > 0</math> 일 때 <math>\log \Gamma(s)</math> 가 볼록성을 갖는 유일한 함수이다.
 +
*  다음과 같은 중요한 성질을 갖는다:<math>\Gamma(s+1) =s\Gamma(s)</math>:<math>\Gamma(1-z) \; \Gamma(z) = {\pi \over \sin{(\pi z)}} \,\!</math>:<math>\Gamma(z) \; \Gamma\left(z + \frac{1}{m}\right) \; \Gamma\left(z + \frac{2}{m}\right) \cdots \Gamma\left(z + \frac{m-1}{m}\right) = (2 \pi)^{(m-1)/2} \; m^{1/2 - mz} \; \Gamma(mz)</math>
 +
* 대수다양체의 [[periods]] 를 표현하는데 등장하며, <math>s</math>가 유리수일때의 감마함수의 값이 초월수인지, 그리고 그 값들 사이의 대수적 관계에 대한 문제는 중요 미해결 문제
 +
  
팩토리얼 함수의 정의역을 수 전체로 일반화한 것.
+
==정의==
  
 
+
*  실수부가 <math>\Re s>0</math>인 복소수 <math>s>0</math>에 대하여 다음과 같이 정의:<math>\Gamma(s) = \int_0^\infty e^{-t} t^{s} \frac{dt}{t}</math>
 +
* <math>\Gamma(s+1) =s\Gamma(s)</math>
 +
* 자연수 <math>n</math>에 대하여 <math>\Gamma(n)=(n-1)!</math>
 +
*  가우스의 정의:<math>\Gamma(z) = \lim_{n \to \infty} \frac{n! \; n^z}{z \; (z+1)\cdots(z+n)} </math>
 +
  
 
+
==해석적확장==
  
 
+
* [[해석적확장(analytic continuation)]]
 +
* <math>\Gamma(s+1) =s\Gamma(s)</math>를 이용하여, 복소평면전체에서 정의된 meromorphic 함수로 이해가능
 +
* <math>s=0,-1,-2\cdots</math>에서 폴(pole)을 가진다
  
 
 
  
<h5>적분표현</h5>
 
  
(Binet's second expression)
+
==함수의 그래프==
 +
* <math>-4<s<4</math>의 범위에서 다음과 같은 그래프를 가짐
 +
[[파일:3197800-gamma.jpg]]
 +
* <math>s>0</math>일 때, <math>\ln \Gamma(s)</math>의 그래프
 +
[[파일:3197800-logofgamma.jpg]]
  
<math>\operatorname{Re} z > 0 </math> 일 때, <math>\log \Gamma(z)=(z-\frac{1}{2})\log z -z+\frac{1}{2}\log 2\pi+ 2\int_0^{\infty}\frac{\tan^{-1}(t/z)}{e^{2\pi t} -1}dt</math>
+
  
(http://dlmf.nist.gov/5/9/ 참고)
+
==무한곱표현==
 +
* 바이어슈트라스 무한곱
 +
:<math>\Gamma(z) = \frac{e^{-\gamma z}}{z} \prod_{n=1}^\infty \left(1 + \frac{z}{n}\right)^{-1} e^{z/n}</math>
 +
  
 
+
==반사공식==
  
<h5>반사공식</h5>
+
* <math>\Gamma(1-z) \; \Gamma(z) = {\pi \over \sin{(\pi z)}} \,\!</math>
  
* <math>\Gamma(1-z) \; \Gamma(z) = {\pi \over \sin{(\pi z)}} \,\!</math>
+
(증명)
* <math>\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}</math>
 
*  일반적으로 <br><math>\Gamma(n+\frac{1}{2})=(\frac{1}{2})_n\sqrt{\pi}</math><br> (증명)<br>
 
  
<math>\Gamma(n+\frac{1}{2})=\Gamma(\frac{2n+1}{2})=(\frac{2n-1}{2})\Gamma(\frac{2n-1}{2})=(\frac{2n-1}{2})(\frac{2n-3}{2})\Gamma(\frac{2n-3}{2})=(\frac{2n-1}{2})\cdots(\frac{1}{2})\Gamma(\frac{1}{2})=\frac{1}{2}\cdot\frac{3}{2}\cdot\frac{2n-1}{2}\sqrt{\pi}=(\frac{1}{2})_n\sqrt{\pi}</math>
+
[[삼각함수의 무한곱 표현]]
 +
:<math>\sin{\pi x} = \pi x \prod _{n=1}^{\infty } \left(1-\frac{x^2}{n^2}\right)</math> 과 :<math>\Gamma(z) = \frac{e^{-\gamma z}}{z} \prod_{n=1}^\infty \left(1 + \frac{z}{n}\right)^{-1} e^{z/n}</math> 를 써서 증명된다. ■
  
 
+
* 다음 계산을 얻는다
 +
:<math>\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}</math>
  
 
+
* 일반적으로 :<math>\Gamma(n+\frac{1}{2})=(\frac{1}{2})_n\sqrt{\pi}</math>
 +
(증명)
 +
:<math>\Gamma(n+\frac{1}{2})=\Gamma(\frac{2n+1}{2})=(\frac{2n-1}{2})\Gamma(\frac{2n-1}{2})=(\frac{2n-1}{2})(\frac{2n-3}{2})\Gamma(\frac{2n-3}{2})=(\frac{2n-1}{2})\cdots(\frac{1}{2})\Gamma(\frac{1}{2})=\frac{1}{2}\cdot\frac{3}{2}\cdot\frac{2n-1}{2}\sqrt{\pi}=(\frac{1}{2})_n\sqrt{\pi}</math>■
  
<h5>곱셈공식</h5>
+
  
* <math>\Gamma(z) \; \Gamma\left(z + \frac{1}{2}\right) = 2^{\frac{1}{2}-2z} \; \sqrt{2\pi} \; \Gamma(2z) \,\!</math>
 
* <math>\Gamma(z) \; \Gamma\left(z + \frac{1}{m}\right) \; \Gamma\left(z + \frac{2}{m}\right) \cdots \Gamma\left(z + \frac{m-1}{m}\right) = (2 \pi)^{(m-1)/2} \; m^{1/2 - mz} \; \Gamma(mz). \,\!</math>
 
  
 
+
==곱셈공식==
  
 
+
*  이항
 +
:<math>\Gamma(z) \; \Gamma\left(z + \frac{1}{2}\right) = 2^{\frac{1}{2}-2z} \; \sqrt{2\pi} \; \Gamma(2z) \,\!</math>:<math>2^{2z}\Gamma(z) \; \Gamma\left(z + \frac{1}{2}\right) = 2\sqrt{\pi}\;\Gamma(2z)</math>
 +
*  일반화:<math>\Gamma(z) \; \Gamma\left(z + \frac{1}{m}\right) \; \Gamma\left(z + \frac{2}{m}\right) \cdots \Gamma\left(z + \frac{m-1}{m}\right) = (2 \pi)^{(m-1)/2} \; m^{1/2 - mz} \; \Gamma(mz)</math>
  
<h5>Digamma  함수</h5>
+
  
* 감마함수의 로그미분으로 정의
+
  
<math>\psi(x) =\frac{d}{dx} \ln{\Gamma(x)}= \frac{\Gamma'(x)}{\Gamma(x)}</math>
+
==적분표현==
  
* 자세한 사실은 [[다이감마 함수(digamma function)|Digamma 함수]] 항목 참조.
+
* Binet's second expression
 +
* <math>\operatorname{Re} z > 0 </math> 일 때,
 +
:<math>\log \Gamma(z)=(z-\frac{1}{2})\log z -z+\frac{1}{2}\log 2\pi+ 2\int_0^{\infty}\frac{\tan^{-1}(t/z)}{e^{2\pi t} -1}dt</math>
 +
* http://dlmf.nist.gov/5/9/ 참고
  
 
+
  
<h5>삼각함수의 적분과 감마함수</h5>
+
  
<math>\int_0^{\frac{\pi}{2}}\sin^{p}\theta{d\theta}= \frac{\sqrt{\pi}}{2} \frac{\Gamma(\frac{p}{2}+\frac{1}{2})}{\Gamma(\frac{p}{2}+1)}</math>
+
==Hurwitz 제타함수와의 관계==
  
<math>\int_0^{\frac{\pi}{2}}\sin^{2n}\theta{d\theta}= \frac{\sqrt{\pi}\Gamma(n+\frac{1}{2})}{2\Gamma(n+1)}=\frac{\pi}{2}\frac{(\frac{1}{2})_n}{(1)_n}</math>
+
*  적당한 상수 R이 존재하여 <math>\Gamma(a)=R{e^{\zeta'(0,a)}}</math>
 +
* [[후르비츠 제타함수(Hurwitz zeta function)]] 참조
  
 
+
  
<h5>하위주제들</h5>
+
  
 
+
==쿰머의 푸리에 급수==
  
 
+
* [[로그감마 함수]]의 푸리에 급수
 +
:<math>\begin{eqnarray}\log\Gamma(x)=\log\sqrt{2\pi}-\frac{1}{2}\log(2\sin\pi x)+\frac{1}{2}(\gamma+2\log\sqrt{2\pi})(1-2x)+\frac{1}{\pi}\sum_{k=1}^{\infty}\frac{\log k}{k}\sin 2\pi kx \nonumber \\ =(\frac{1}{2}-x)(\gamma+\log 2)+(1-x)\log \pi -\frac{1}{2}\log(\sin\pi x)+\frac{1}{\pi}\sum_{k=1}^{\infty}\frac{\log k}{k}\sin 2\pi kx \nonumber  \end{eqnarray} </math>
  
 
+
  
==== 하위페이지 ====
+
  
* [[1964250|0 토픽용템플릿]]<br>
+
==테일러 급수==
** [[2060652|0 상위주제템플릿]]<br>
 
  
 
+
* [[로그감마 함수]]의 테일러 급수:<math>\log\Gamma(1+x) =-\gamma x+\sum_{k=2}^{\infty}(-1)^k \frac{\zeta(k)}{k}x^k</math>
  
 
+
  
<h5>재미있는 사실</h5>
+
  
 
+
==다이감마 함수==
  
 
+
* 감마함수의 로그미분으로 정의
 +
:<math>\psi(x) =\frac{d}{dx} \ln{\Gamma(x)}= \frac{\Gamma'(x)}{\Gamma(x)}</math>
 +
* 자세한 사실은 [[다이감마 함수(digamma function)]] 항목 참조.
 +
  
<h5>관련된 단원</h5>
+
==오일러 베타적분==
 +
* [[오일러 베타적분(베타함수)|오일러 베타적분]] 항목 참조
 +
:<math>B(x,y)=\dfrac{\Gamma(x)\,\Gamma(y)}{\Gamma(x+y)}</math>
  
 
+
  
 
+
==감마함수와 초월수==
  
<h5>많이 나오는 질문</h5>
+
* 감마함수의 유리수에서의 값이 초월수인지의 문제.
 +
* 다음 경우가 초월수 임이 알려져 있다
 +
:<math>\Gamma(\frac{1}{3}),\Gamma(\frac{2}{3}),\Gamma(\frac{1}{4}),\Gamma(\frac{3}{4}),\Gamma(\frac{1}{6}),\Gamma(\frac{5}{6})</math>
 +
* 미해결 문제. 다음은 초월수인가?
 +
:<math>\Gamma(\frac{1}{5})</math>
 +
* [[무리수와 초월수]] 항목 참조
  
*  네이버 지식인<br>
 
** http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
  
 
+
==메모==
 +
* http://twistedone151.wordpress.com/2008/05/26/monday-math-21-the-gamma-function-part-4/
  
<h5>관련된 고교수학 또는 대학수학</h5>
 
  
 
+
==역사==
 +
* 1811년 르장드르가 팩토리얼의 확장을 나타내기 위하여 <math>\Gamma</math> 기호를 도입
 +
* [http://www.luschny.de/math/factorial/history.html The birth of the real factorial function]
 +
* http://mathoverflow.net/questions/9746/who-invented-the-gamma-function
 +
* http://mathoverflow.net/questions/156495/why-does-the-gamma-function-use-the-symbol-gamma
 +
  
 
+
  
<h5>관련된 다른 주제들</h5>
+
==관련된 항목들==
  
 +
* [[q-감마함수]]
 
* [[파이가 아니라 2파이다?]]
 
* [[파이가 아니라 2파이다?]]
 
* [[정규분포와 그 확률밀도함수|정규분포의 확률밀도함수는 어떻게 얻어지는가?]]
 
* [[정규분포와 그 확률밀도함수|정규분포의 확률밀도함수는 어떻게 얻어지는가?]]
 +
* [[가우시안 적분]]
 
* [[스털링 공식]]
 
* [[스털링 공식]]
 +
* [[리만제타함수|리만제타함수와 리만가설]]
 +
* [[오일러 베타적분(베타함수)|베타적분]]
 +
  
 
 
  
<h5>관련도서 및 추천도서</h5>
+
=== 하위페이지 ===
 +
* [[감마곱 (Gamma Products)]]
 +
* [[다이감마 함수(digamma function)]]
 +
* [[더블감마함수와 Barnes G-함수]]
 +
* [[로그감마 함수]]
 +
* [[멀티 감마함수(multiple gamma function)]]
 +
* [[트리감마 함수(trigamma function)]]
 +
* [[폴리감마함수(polygamma functions)]]
 +
  
*  The Gamma Function<br>
+
==매스매티카 파일 및 계산 리소스==
** Emil Artin
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
*  도서검색<br>
 
** http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
** http://book.daum.net/search/mainSearch.do?query=
 
  
 
+
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxZmM5YWZjMzAtZmVjNS00OWUxLWJhZGUtMzMwN2Q4YmI5ZTIz&sort=name&layout=list&num=50
 +
* http://functions.wolfram.com/
 +
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
  
<h5>사전자료</h5>
+
  
* [http://ko.wikipedia.org/wiki/%EA%B0%90%EB%A7%88%ED%95%A8%EC%88%98 http://ko.wikipedia.org/wiki/감마함수]
+
==사전형태의 자료==
 +
 
 +
* http://ko.wikipedia.org/wiki/감마함수
 
* http://en.wikipedia.org/wiki/gamma_function
 
* http://en.wikipedia.org/wiki/gamma_function
 +
* http://en.wikipedia.org/wiki/Particular_values_of_the_Gamma_function
 +
* http://en.wikipedia.org/wiki/Bohr–Mollerup_theorem
 
* http://mathworld.wolfram.com/BinetsLogGammaFormulas.html
 
* http://mathworld.wolfram.com/BinetsLogGammaFormulas.html
  
 
+
   
 
 
<h5>관련기사</h5>
 
 
 
* 네이버 뉴스 검색 (키워드 수정)<br>
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
 
 
 
 
 
 
 
 
  
<h5>블로그</h5>
+
  
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
+
==관련도서==
* 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
+
* Emil Artin, The Gamma Function
  
 
 
  
<h5>이미지 검색</h5>
 
  
* http://commons.wikimedia.org/w/index.php?title=Special%3ASearch&search=
+
==리뷰, 에세이, 강의노트==
* http://images.google.com/images?q=
+
* Dutka, Jacques. 1991. “The early history of the factorial function.” <em>Archive for History of Exact Sciences</em> 43 (3): 225-249. doi:[http://dx.doi.org/10.1007/BF00389433 10.1007/BF00389433].
* [http://www.artchive.com/ http://www.artchive.com]
 
  
 
 
  
<h5>동영상</h5>
+
==관련논문==
 +
* Fekih-Ahmed, Lazhar. “On the Power Series Expansion of the Reciprocal Gamma Function.” arXiv:1407.5983 [math], July 22, 2014. http://arxiv.org/abs/1407.5983.
 +
* Paris, R. B. “On the Asymptotic Expansion of <math>\Gamma(x)</math>, Lagrange’s Inversion Theorem and the Stirling Coefficients.” arXiv:1405.3423 [math], May 14, 2014. http://arxiv.org/abs/1405.3423.
 +
* Chudnovsky, G. “Algebraic Independence of the Values of Elliptic Function at Algebraic Points.” Inventiones Mathematicae 61, no. 3 (October 1, 1980): 267–90. doi:10.1007/BF01390068.
 +
[[분류:특수함수]]
  
* http://www.youtube.com/results?search_type=&search_query=
+
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q190573 Q190573]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'gamma'}, {'LEMMA': 'function'}]

2021년 2월 17일 (수) 03:58 기준 최신판

개요

  • 팩토리얼 함수의 정의역을 복소수로 확장하는 함수이다.
  • 자연수에 대해 팩토리얼과 같은 값을 가지면서 \(s > 0\) 일 때 \(\log \Gamma(s)\) 가 볼록성을 갖는 유일한 함수이다.
  • 다음과 같은 중요한 성질을 갖는다\[\Gamma(s+1) =s\Gamma(s)\]\[\Gamma(1-z) \; \Gamma(z) = {\pi \over \sin{(\pi z)}} \,\!\]\[\Gamma(z) \; \Gamma\left(z + \frac{1}{m}\right) \; \Gamma\left(z + \frac{2}{m}\right) \cdots \Gamma\left(z + \frac{m-1}{m}\right) = (2 \pi)^{(m-1)/2} \; m^{1/2 - mz} \; \Gamma(mz)\]
  • 대수다양체의 periods 를 표현하는데 등장하며, \(s\)가 유리수일때의 감마함수의 값이 초월수인지, 그리고 그 값들 사이의 대수적 관계에 대한 문제는 중요 미해결 문제


정의

  • 실수부가 \(\Re s>0\)인 복소수 \(s>0\)에 대하여 다음과 같이 정의\[\Gamma(s) = \int_0^\infty e^{-t} t^{s} \frac{dt}{t}\]
  • \(\Gamma(s+1) =s\Gamma(s)\)
  • 자연수 \(n\)에 대하여 \(\Gamma(n)=(n-1)!\)
  • 가우스의 정의\[\Gamma(z) = \lim_{n \to \infty} \frac{n! \; n^z}{z \; (z+1)\cdots(z+n)} \]


해석적확장

  • 해석적확장(analytic continuation)
  • \(\Gamma(s+1) =s\Gamma(s)\)를 이용하여, 복소평면전체에서 정의된 meromorphic 함수로 이해가능
  • \(s=0,-1,-2\cdots\)에서 폴(pole)을 가진다


함수의 그래프

  • \(-4<s<4\)의 범위에서 다음과 같은 그래프를 가짐

3197800-gamma.jpg

  • \(s>0\)일 때, \(\ln \Gamma(s)\)의 그래프

3197800-logofgamma.jpg


무한곱표현

  • 바이어슈트라스 무한곱

\[\Gamma(z) = \frac{e^{-\gamma z}}{z} \prod_{n=1}^\infty \left(1 + \frac{z}{n}\right)^{-1} e^{z/n}\]


반사공식

  • \(\Gamma(1-z) \; \Gamma(z) = {\pi \over \sin{(\pi z)}} \,\!\)

(증명)

삼각함수의 무한곱 표현 \[\sin{\pi x} = \pi x \prod _{n=1}^{\infty } \left(1-\frac{x^2}{n^2}\right)\] 과 \[\Gamma(z) = \frac{e^{-\gamma z}}{z} \prod_{n=1}^\infty \left(1 + \frac{z}{n}\right)^{-1} e^{z/n}\] 를 써서 증명된다. ■

  • 다음 계산을 얻는다

\[\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}\]

  • 일반적으로 \[\Gamma(n+\frac{1}{2})=(\frac{1}{2})_n\sqrt{\pi}\]

(증명) \[\Gamma(n+\frac{1}{2})=\Gamma(\frac{2n+1}{2})=(\frac{2n-1}{2})\Gamma(\frac{2n-1}{2})=(\frac{2n-1}{2})(\frac{2n-3}{2})\Gamma(\frac{2n-3}{2})=(\frac{2n-1}{2})\cdots(\frac{1}{2})\Gamma(\frac{1}{2})=\frac{1}{2}\cdot\frac{3}{2}\cdot\frac{2n-1}{2}\sqrt{\pi}=(\frac{1}{2})_n\sqrt{\pi}\]■



곱셈공식

  • 이항

\[\Gamma(z) \; \Gamma\left(z + \frac{1}{2}\right) = 2^{\frac{1}{2}-2z} \; \sqrt{2\pi} \; \Gamma(2z) \,\!\]\[2^{2z}\Gamma(z) \; \Gamma\left(z + \frac{1}{2}\right) = 2\sqrt{\pi}\;\Gamma(2z)\]

  • 일반화\[\Gamma(z) \; \Gamma\left(z + \frac{1}{m}\right) \; \Gamma\left(z + \frac{2}{m}\right) \cdots \Gamma\left(z + \frac{m-1}{m}\right) = (2 \pi)^{(m-1)/2} \; m^{1/2 - mz} \; \Gamma(mz)\]



적분표현

  • Binet's second expression
  • \(\operatorname{Re} z > 0 \) 일 때,

\[\log \Gamma(z)=(z-\frac{1}{2})\log z -z+\frac{1}{2}\log 2\pi+ 2\int_0^{\infty}\frac{\tan^{-1}(t/z)}{e^{2\pi t} -1}dt\]



Hurwitz 제타함수와의 관계



쿰머의 푸리에 급수

\[\begin{eqnarray}\log\Gamma(x)=\log\sqrt{2\pi}-\frac{1}{2}\log(2\sin\pi x)+\frac{1}{2}(\gamma+2\log\sqrt{2\pi})(1-2x)+\frac{1}{\pi}\sum_{k=1}^{\infty}\frac{\log k}{k}\sin 2\pi kx \nonumber \\ =(\frac{1}{2}-x)(\gamma+\log 2)+(1-x)\log \pi -\frac{1}{2}\log(\sin\pi x)+\frac{1}{\pi}\sum_{k=1}^{\infty}\frac{\log k}{k}\sin 2\pi kx \nonumber \end{eqnarray} \]



테일러 급수

  • 로그감마 함수의 테일러 급수\[\log\Gamma(1+x) =-\gamma x+\sum_{k=2}^{\infty}(-1)^k \frac{\zeta(k)}{k}x^k\]



다이감마 함수

  • 감마함수의 로그미분으로 정의

\[\psi(x) =\frac{d}{dx} \ln{\Gamma(x)}= \frac{\Gamma'(x)}{\Gamma(x)}\]


오일러 베타적분

\[B(x,y)=\dfrac{\Gamma(x)\,\Gamma(y)}{\Gamma(x+y)}\]


감마함수와 초월수

  • 감마함수의 유리수에서의 값이 초월수인지의 문제.
  • 다음 경우가 초월수 임이 알려져 있다

\[\Gamma(\frac{1}{3}),\Gamma(\frac{2}{3}),\Gamma(\frac{1}{4}),\Gamma(\frac{3}{4}),\Gamma(\frac{1}{6}),\Gamma(\frac{5}{6})\]

  • 미해결 문제. 다음은 초월수인가?

\[\Gamma(\frac{1}{5})\]


메모


역사



관련된 항목들


하위페이지


매스매티카 파일 및 계산 리소스


사전형태의 자료



관련도서

  • Emil Artin, The Gamma Function


리뷰, 에세이, 강의노트

  • Dutka, Jacques. 1991. “The early history of the factorial function.” Archive for History of Exact Sciences 43 (3): 225-249. doi:10.1007/BF00389433.


관련논문

  • Fekih-Ahmed, Lazhar. “On the Power Series Expansion of the Reciprocal Gamma Function.” arXiv:1407.5983 [math], July 22, 2014. http://arxiv.org/abs/1407.5983.
  • Paris, R. B. “On the Asymptotic Expansion of \(\Gamma(x)\), Lagrange’s Inversion Theorem and the Stirling Coefficients.” arXiv:1405.3423 [math], May 14, 2014. http://arxiv.org/abs/1405.3423.
  • Chudnovsky, G. “Algebraic Independence of the Values of Elliptic Function at Algebraic Points.” Inventiones Mathematicae 61, no. 3 (October 1, 1980): 267–90. doi:10.1007/BF01390068.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'gamma'}, {'LEMMA': 'function'}]