"리만 제타 함수"의 두 판 사이의 차이
85번째 줄: | 85번째 줄: | ||
* [[ζ(2)의 계산, 오일러와 바젤문제(완전제곱수의 역수들의 합)]] | * [[ζ(2)의 계산, 오일러와 바젤문제(완전제곱수의 역수들의 합)]] | ||
− | * | + | * [[ζ(3)는 무리수이다(아페리의 정리)]] |
+ | * [[ζ(4)와 슈테판-볼츠만 법칙|ζ(4)]] | ||
103번째 줄: | 104번째 줄: | ||
* [[리만제타함수]]<br> | * [[리만제타함수]]<br> | ||
+ | ** [[ζ(2)의 계산, 오일러와 바젤문제(완전제곱수의 역수들의 합)]]<br> | ||
+ | ** [[ζ(4)와 슈테판-볼츠만 법칙]]<br> | ||
** [[두자연수가 서로소일 확률과 리만제타함수]]<br> | ** [[두자연수가 서로소일 확률과 리만제타함수]]<br> | ||
** [[리만가설]]<br> | ** [[리만가설]]<br> | ||
108번째 줄: | 111번째 줄: | ||
** [[모든 자연수의 합과 리만제타함수]]<br> | ** [[모든 자연수의 합과 리만제타함수]]<br> | ||
** [[소수와 리만제타함수]]<br> | ** [[소수와 리만제타함수]]<br> | ||
− | |||
− | |||
** [[정수에서의 리만제타함수의 값]]<br> | ** [[정수에서의 리만제타함수의 값]]<br> | ||
167번째 줄: | 168번째 줄: | ||
− | <h5> | + | <h5>사전형태의 자료</h5> |
* http://en.wikipedia.org/wiki/Riemann_zeta_function | * http://en.wikipedia.org/wiki/Riemann_zeta_function | ||
* [http://ko.wikipedia.org/wiki/%EB%A6%AC%EB%A7%8C%EC%A0%9C%ED%83%80%ED%95%A8%EC%88%98 http://ko.wikipedia.org/wiki/리만제타함수] | * [http://ko.wikipedia.org/wiki/%EB%A6%AC%EB%A7%8C%EC%A0%9C%ED%83%80%ED%95%A8%EC%88%98 http://ko.wikipedia.org/wiki/리만제타함수] | ||
+ | |||
+ | |||
+ | |||
+ | |||
2011년 1월 28일 (금) 13:54 판
이 항목의 스프링노트 원문주소
개요
- 다음과 같은 급수로 복소함수를 정의
\(\zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^s}\), \(\mathfrak{R}(s)>1\) - 이렇게 실수부가 1보다 큰 복소수 영역에서 급수로 정의된 함수를 해석적확장을 통해, 복소평면 전체에서 정의된 함수를 정의할 수 있음.
- 그렇게 복소수 전체에서 정의된 함수를 리만의 제타함수라고 부름.
- 리만가설은 리만제타함수의 해에 관련된 미해결문제.
- 정수론에서 소수의 분포와 관련한 정보를 담고 있는 중요한 함수
- 이 함수를 이해하는 좀더 일반적인 이론적 틀에 대해서는 L-함수, 제타함수와 디리클레 급수 항목을 참조
해석적확장 (analytic continuation)
- 자코비 세타함수를 이용하여, 리만제타함수를 복소평면 전체로 확장할 수 있음.
\(\theta(\tau)= \sum_{n=-\infty}^\infty e^{\pi i n^2 \tau}\)
- 감마함수
\(\Gamma(s) = \int_0^\infty e^{-t} t^{s} \frac{dt}{t}\)
를 이용하면,
\(\int_0^\infty e^{-\pi n^2t} t^{\frac{s}{2}} \frac{dt}{t} = {\pi}^{-\frac{s}{2}}\Gamma(\frac{s}{2})\frac{1}{n^s}\) - 형식적으로는 다음과 같은 적분에 의해, 리만제타함수를 얻을 수 있음.
\(\xi(s) : = \pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)= \int_0^\infty (\frac{\theta(it)-1}{2})t^{\frac{s}{2}} \frac{dt}{t}\)
- 그러나 위의 적분은 모든 s에 대하여 수렴하지 않음. 따라서 다음과 같이 수정하여, 적분이 모든 s에 대하여 정의되도록 함.
\(\xi(s)=\pi^{-s/2}\Gamma(s/2)\zeta(s) = \frac{1}{s-1}-\frac{1}{s} +\frac{1}{2}\int_0^1 (\theta(it)-\frac{1}{\sqrt{t}})t^{\frac{s}{2}} \frac{dt}{t} +\frac{1}{2}\int_1^\infty (\theta(it)-1)t^{\frac{s}{2}} \frac{dt}{t}\)
여기서는 자코비 세타함수의 성질
\(\theta({iy)=\frac{1}{\sqrt{y}}\theta(\frac{i}{y})\)
이 사용됨.
리만제타함수의 함수방정식
- 리만제타함수는 \(s=\frac{1}{2}\) 에 대하여 대칭성을 가지고, 그에 따른 함수방정식을 만족시킴.
\(\xi(s) = \xi(1 - s)\) 즉,
\(\pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)=\pi^{-(1-s)/2}\ \Gamma\left(\frac{1-s}{2}\right)\ \zeta(1-s)\)
(증명)
자코비 세타함수의 모듈라 성질을 사용하면,
\(\int_0^1 (\theta(it)-\frac{1}{\sqrt{t}})t^{\frac{s}{2}} \frac{dt}{t}= \int_1^\infty (\theta(it)-1)t^{\frac{1-s}{2}} \frac{dt}{t}\)
이므로, \(\xi(s)\) 의 정의를 이용하면,
\(\xi(s) = \frac{1}{s-1}-\frac{1}{s} +\frac{1}{2}\int_1^\infty (\theta(it)-1)t^{\frac{1-s}{2}} \frac{dt}{t}+\frac{1}{2}\int_1^\infty (\theta(it)-1)t^{\frac{s}{2}} \frac{dt}{t}\)
를 얻는다.
이 식에서 \(s \leftrightarrow 1-s\) 는 우변을 변화시키지 않음므로 함수방정식 \(\xi(s) = \xi(1 - s)\)을 얻는다.
(증명끝)
복소함수로서의 리만제타함수
- meromorphic function
- 1에서 pole 을 가지며 로랑급수 전개는 다음과 같다
\(\zeta(s)=\frac{1}{s-1}+\gamma+O((s-1))\)
더 정확히는
\(\zeta(s)=\frac{1}{s-1}+\sum_{n=0}^\infty \frac{(-1)^n}{n!} \gamma_n \; (s-1)^n\)
\(\gamma_n\)은 스틸체스 상수
리만가설
제타values
메모
하위페이지
관련된 학부 과목과 미리 알고 있으면 좋은 것들
관련된 항목들
수학용어번역
- analytic continuation 해석적 접속
- 해석적확장으로 하는게 적당해 보임
- continuation 연속
- continuation method 연속법
- direct analytic continuation 직접해석접속
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
표준적인 도서 및 추천도서
- Riemann's Zeta Function
- Harold M. Edwards
관련논문과 에세이
- Problems of the Millennium: The Riemann Hypothesis
- P Sarnak, 2004
사전형태의 자료
관련링크와 웹페이지
블로그
- Riemann's zeta function
- Williams, Floyd
- June 16, 2008
- MSRI 'A Window into Zeta and Modular Physics'워크샵
- 리만제타함수의 해석적 연속 및 함수방정식에 대한 내용을 담고 있는 강의
- 피타고라스의 창