베르누이 수
개요
- 베르누이 수는 수학의 많은 곳에서 마주치게 되는, 중요한 수열
- 베르누이 수의 생성함수는 다음과 같이 주어진다.
\[\frac{t}{e^t-1}= \sum_{n=0}^\infty B_n\frac{t^n}{n!}\]
테이블
- 처음 몇 베르누이 수는 다음과 같다
\begin{array}{c|c} n & B_n \\ \hline 0 & 1 \\ 1 & -\frac{1}{2} \\ 2 & \frac{1}{6} \\ 3 & 0 \\ 4 & -\frac{1}{30} \\ 5 & 0 \\ 6 & \frac{1}{42} \\ 7 & 0 \\ 8 & -\frac{1}{30} \\ 9 & 0 \\ 10 & \frac{5}{66} \\ 11 & 0 \\ 12 & -\frac{691}{2730} \\ 13 & 0 \\ 14 & \frac{7}{6} \\ 15 & 0 \\ 16 & -\frac{3617}{510} \\ 17 & 0 \\ 18 & \frac{43867}{798} \\ 19 & 0 \\ 20 & -\frac{174611}{330} \end{array}
베르누이 수의 성질
- \(B_m=\frac{N_m}{D_m}\) (여기서 \(N_m, D_m\)은 서로소) 으로 쓰면 \(D_m\)은 \(p-1|m\) 을 만족하는 모든 소수 \(p\)의 곱으로 주어짐
- \(D_4=30 = 2 \times 3 \times 5\)
- \(D_{10}= 66 = 2 \times 3 \times 11\)
- \(D_{12}= 2730 = 2 \times 3 \times 5 \times 7 \times 13\)
멱급수와 베르누이 수
삼각함수의 급수 표현
- 사인함수와 코사인함수의 급수표현은 미적분학 강의를 통해서도 잘 배우지만, 탄젠트는 거의 언급되지 않음.
- 그 이유는, 표현에 베르누이수가 필요하기 때문.
$$ \begin{align} \tan x &= x + \frac{x^3}{3} + \frac{2 x^5}{15} + \frac{17 x^7}{315} + \cdots &=& \sum_{n=1}^\infty \frac{(-1)^{n-1} 2^{2n} (2^{2n}-1) B_{2n} x^{2n-1}}{(2n)!}\\ \cot x &= \frac {1} {x} - \frac {x}{3} - \frac {x^3} {45} - \frac {2 x^5} {945} - \cdots &=& \sum_{n=0}^\infty \frac{(-1)^n 2^{2n} B_{2n} x^{2n-1}}{(2n)!} \end{align} $$
쌍곡함수의 급수표현
- 쌍곡함수에 대해서도 유사한 결과를 얻는다
$$ \begin{align} \tanh x &= x - \frac {x^3} {3} + \frac {2x^5} {15} - \frac {17x^7} {315} + \cdots &=& \sum_{n=1}^\infty \frac{2^{2n}(2^{2n}-1)B_{2n} x^{2n-1}}{(2n)!},& \left |x \right | < \frac {\pi} {2}\\ \coth x &= \frac {1} {x} + \frac {x} {3} - \frac {x^3} {45} + \frac {2x^5} {945} + \cdots &=& \sum_{n=0}^\infty \frac{2^{2n} B_{2n} x^{2n-1}} {(2n)!},& 0 < \left |x \right | < \pi \end{align} $$
로바체프스키함수
- 로바체프스키와 클라우센 함수\[\Lambda(\theta)=\theta-\theta \log(2\theta)+2\theta\sum_{n=1}^{\infty}\frac{|B_{2n}|}{2n}\frac{(2\theta)^{2n}}{(2n+1)!}\]
다이감마 함수
- 다이감마 함수(digamma function)\[\psi(x) = \log(x) - \frac{1}{2x} - \sum_{n=1}^\infty \frac{B_{2n}}{2n(x^{2n})}\]
관련된 학부 과목과 미리 알고 있으면 좋은 것들
관련된 항목들
매스매티카 파일 및 계산 리소스
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Bernoulli_numbers
- http://en.wikipedia.org/wiki/Bernoulli_polynomials
- http://en.wikipedia.org/wiki/Hyperbolic_function
- http://en.wikipedia.org/wiki/Trigonometric_function
리뷰, 에세이, 강의노트
관련논문
- Stirling's Series and Bernoulli Numbers
- Elias Y. Deeba and Dennis M. Rodriguez, The American Mathematical Monthly, Vol. 98, No. 5 (May, 1991), pp. 423-426
- A Theorem on the Numerators of the Bernoulli Numbers
- Kurt Girstmair, The American Mathematical Monthly, Vol. 97, No. 2 (Feb., 1990), pp. 136-138