"디오판투스 방정식"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) (→수학용어번역) |
Pythagoras0 (토론 | 기여) |
||
(같은 사용자의 중간 판 9개는 보이지 않습니다) | |||
12번째 줄: | 12번째 줄: | ||
* <math>x^3+y^3=1729</math>의 정수해. [[라마누잔과 1729]] 참조 | * <math>x^3+y^3=1729</math>의 정수해. [[라마누잔과 1729]] 참조 | ||
* <math>3x^3+4y^3+5z^3=0</math> ([http://www.math.lsu.edu/%7Everrill/teaching/math7280/selmer_example/selmer_example.pdf http://www.math.lsu.edu/~verrill/teaching/math7280/selmer_example/selmer_example.pdf]) | * <math>3x^3+4y^3+5z^3=0</math> ([http://www.math.lsu.edu/%7Everrill/teaching/math7280/selmer_example/selmer_example.pdf http://www.math.lsu.edu/~verrill/teaching/math7280/selmer_example/selmer_example.pdf]) | ||
+ | * [[합동수 문제 (congruent number problem)]] | ||
+ | * [[사각 피라미드 퍼즐]] | ||
+ | * [[펠 방정식(Pell's equation)]] | ||
+ | * [[피타고라스 쌍(Pythagorean triple)]] | ||
+ | * [[라마누잔-나겔 방정식]] | ||
− | |||
− | |||
==역사== | ==역사== | ||
− | * [[ | + | * [[수학사 연표]] |
− | |||
− | |||
− | |||
==메모== | ==메모== | ||
+ | * [[모델 추측 (Mordell conjecture)]] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==관련된 항목들== | ==관련된 항목들== | ||
54번째 줄: | 39번째 줄: | ||
==수학용어번역== | ==수학용어번역== | ||
− | |||
− | |||
* {{학술용어집|url=diophantine}} | * {{학술용어집|url=diophantine}} | ||
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] | ||
66번째 줄: | 49번째 줄: | ||
* {{매스월드|urlname=DiophantineEquation|title=디오판투스 방정식}} | * {{매스월드|urlname=DiophantineEquation|title=디오판투스 방정식}} | ||
* http://mathworld.wolfram.com/DiophantineEquation.html | * http://mathworld.wolfram.com/DiophantineEquation.html | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | * [http:// | + | ==리뷰, 에세이, 강의노트== |
− | + | * Pannekoek, René. “Diophantus Revisited: On Rational Surfaces and K3 Surfaces in the Arithmetica.” arXiv:1509.06138 [math], September 21, 2015. http://arxiv.org/abs/1509.06138. | |
+ | * Das, Pranabesh, and Amos Turchet. “Invitation to Integral and Rational Points on Curves and Surfaces.” arXiv:1407.7750 [math], July 29, 2014. http://arxiv.org/abs/1407.7750. | ||
+ | * Ono, Ken. “Ramanujan, Taxicabs, Birthdates, ZIP Codes, and Twists.” The American Mathematical Monthly 104, no. 10 (December 1997): 912. doi:10.2307/2974471. | ||
− | + | ==관련도서== | |
− | + | * [http://books.google.com/books?id=QugvF7xfE-oC Diophantine equations] | |
+ | ** Mordell, L. J. (1969) | ||
− | |||
− | == | + | == 노트 == |
− | * [ | + | ===위키데이터=== |
− | + | * ID : [https://www.wikidata.org/wiki/Q905896 Q905896] | |
+ | ===말뭉치=== | ||
+ | # Diophantine equation, equation involving only sums, products, and powers in which all the constants are integers and the only solutions of interest are integers.<ref name="ref_620634e0">[https://www.britannica.com/science/Diophantine-equation Diophantine equation | mathematics]</ref> | ||
+ | # Congruence methods provide a useful tool in determining the number of solutions to a Diophantine equation.<ref name="ref_620634e0" /> | ||
+ | # Linear Diophantine equation in two variables takes the form of \(ax+by=c,\) where \(x, y \in \mathbb{Z}\) and a, b, c are integer constants.<ref name="ref_6745cace">[https://math.libretexts.org/Courses/Mount_Royal_University/MATH_2150%3A_Higher_Arithmetic/5%3A_Diophantine_Equations/5.1%3A_Linear_Diophantine_Equations 5.1: Linear Diophantine Equations]</ref> | ||
+ | # : Solve the Homogeneous linear Diophantine equation \(6x+9y=0, x, y \in \mathbb{Z}\).<ref name="ref_6745cace" /> | ||
+ | # Use the following steps to solve a non-homogeneous linear Diophantine equation.<ref name="ref_6745cace" /> | ||
+ | # Finding the solution or solutions to a Diophantine equation is closely tied to modular arithmetic and number theory.<ref name="ref_bbcbc179">[https://artofproblemsolving.com/wiki/index.php/Diophantine_equation Art of Problem Solving]</ref> | ||
+ | # A Diophantine equation in the form is known as a linear combination.<ref name="ref_bbcbc179" /> | ||
+ | # The solutions to the diophantine equation correspond to lattice points that lie on the line.<ref name="ref_bbcbc179" /> | ||
+ | # Sometimes, modular arithmetic can be used to prove that no solutions to a given Diophantine equation exist.<ref name="ref_bbcbc179" /> | ||
+ | # A linear Diophantine equation is an equation of the first-degree whose solutions are restricted to integers.<ref name="ref_de913260">[https://medium.com/cantors-paradise/famous-diophantine-equations-84073467d366 Famous Diophantine Equations]</ref> | ||
+ | # This Diophantine equation was first studied extensively by Indian mathematician Brahmagupta around the year 628.<ref name="ref_de913260" /> | ||
+ | # A linear Diophantine equation equates to a constant the sum of two or more monomials, each of degree one.<ref name="ref_31d5bbbd">[https://en.wikipedia.org/wiki/Diophantine_equation Diophantine equation]</ref> | ||
+ | # The simplest linear Diophantine equation takes the form ax + by = c, where a, b and c are given integers.<ref name="ref_31d5bbbd" /> | ||
+ | # A homogeneous Diophantine equation is a Diophantine equation that is defined by a homogeneous polynomial.<ref name="ref_31d5bbbd" /> | ||
+ | # If a Diophantine equation has as an additional variable or variables occurring as exponents, it is an exponential Diophantine equation.<ref name="ref_31d5bbbd" /> | ||
+ | # We call a “Diophantine equation” to an equation of the form, \(f(x_1, x_2, \ldots x_n) = 0\) where \(n \geq 2\) and \(x_1, x_2, \ldots x_n\) are integer variables.<ref name="ref_97214d62">[https://docs.sympy.org/latest/modules/solvers/diophantine.html Diophantine — SymPy 1.7.1 documentation]</ref> | ||
+ | # Hilbert's 10th problem asked if an algorithm existed for determining whether an arbitrary Diophantine equation has a solution.<ref name="ref_eb00bace">[https://mathworld.wolfram.com/DiophantineEquation.html Diophantine Equation -- from Wolfram MathWorld]</ref> | ||
+ | # We exhibit a collection of (probably infinitely many) rational numbers k for which this Diophantine equation is satisfied.<ref name="ref_ab53d062">[http://ijmsi.ir/article-1-1004-en.html On the Diophantine Equation x^6+ky^3=z^6+kw^3]</ref> | ||
+ | # Brindza, B.: On a diophantine equation connected with the Fermat equation.<ref name="ref_9700b534">[http://www.numdam.org/item/CM_1987__61_2_137_0/ Zeros of polynomials and exponential diophantine equations]</ref> | ||
+ | ===소스=== | ||
+ | <references /> | ||
− | |||
− | + | [[분류:디오판투스 방정식]] | |
− | * | + | ==메타데이터== |
− | + | ===위키데이터=== | |
+ | * ID : [https://www.wikidata.org/wiki/Q905896 Q905896] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'diophantine'}, {'LEMMA': 'equation'}] | ||
+ | * [{'LOWER': 'diophantic'}, {'LEMMA': 'equation'}] |
2021년 2월 17일 (수) 05:03 기준 최신판
개요
- 다변수다항식의 정수해 또는 유리수해를 찾는 문제를 디오판투스 방정식이라 함
- 부정방정식으로도 불림
예
- \(x^n+y^n=z^n\)의 정수해에 대한 페르마의 마지막 정리가 유명한 예
- \(x^2-dy^2=\pm 1\) 형태의 펠 방정식은 초등정수론과 대수적수론에서 중요한 역할을 함
- \(x^3+y^3=1729\)의 정수해. 라마누잔과 1729 참조
- \(3x^3+4y^3+5z^3=0\) (http://www.math.lsu.edu/~verrill/teaching/math7280/selmer_example/selmer_example.pdf)
- 합동수 문제 (congruent number problem)
- 사각 피라미드 퍼즐
- 펠 방정식(Pell's equation)
- 피타고라스 쌍(Pythagorean triple)
- 라마누잔-나겔 방정식
역사
메모
관련된 항목들
수학용어번역
- diophantine - 대한수학회 수학용어집
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/디오판투스방정식
- http://en.wikipedia.org/wiki/Diophantine_equation
- http://en.wikipedia.org/wiki/Thue-Siegel-Roth_theorem
- 에릭 웨이스타인, MathWorld - 디오판투스 방정식
- http://mathworld.wolfram.com/DiophantineEquation.html
리뷰, 에세이, 강의노트
- Pannekoek, René. “Diophantus Revisited: On Rational Surfaces and K3 Surfaces in the Arithmetica.” arXiv:1509.06138 [math], September 21, 2015. http://arxiv.org/abs/1509.06138.
- Das, Pranabesh, and Amos Turchet. “Invitation to Integral and Rational Points on Curves and Surfaces.” arXiv:1407.7750 [math], July 29, 2014. http://arxiv.org/abs/1407.7750.
- Ono, Ken. “Ramanujan, Taxicabs, Birthdates, ZIP Codes, and Twists.” The American Mathematical Monthly 104, no. 10 (December 1997): 912. doi:10.2307/2974471.
관련도서
- Diophantine equations
- Mordell, L. J. (1969)
노트
위키데이터
- ID : Q905896
말뭉치
- Diophantine equation, equation involving only sums, products, and powers in which all the constants are integers and the only solutions of interest are integers.[1]
- Congruence methods provide a useful tool in determining the number of solutions to a Diophantine equation.[1]
- Linear Diophantine equation in two variables takes the form of \(ax+by=c,\) where \(x, y \in \mathbb{Z}\) and a, b, c are integer constants.[2]
- : Solve the Homogeneous linear Diophantine equation \(6x+9y=0, x, y \in \mathbb{Z}\).[2]
- Use the following steps to solve a non-homogeneous linear Diophantine equation.[2]
- Finding the solution or solutions to a Diophantine equation is closely tied to modular arithmetic and number theory.[3]
- A Diophantine equation in the form is known as a linear combination.[3]
- The solutions to the diophantine equation correspond to lattice points that lie on the line.[3]
- Sometimes, modular arithmetic can be used to prove that no solutions to a given Diophantine equation exist.[3]
- A linear Diophantine equation is an equation of the first-degree whose solutions are restricted to integers.[4]
- This Diophantine equation was first studied extensively by Indian mathematician Brahmagupta around the year 628.[4]
- A linear Diophantine equation equates to a constant the sum of two or more monomials, each of degree one.[5]
- The simplest linear Diophantine equation takes the form ax + by = c, where a, b and c are given integers.[5]
- A homogeneous Diophantine equation is a Diophantine equation that is defined by a homogeneous polynomial.[5]
- If a Diophantine equation has as an additional variable or variables occurring as exponents, it is an exponential Diophantine equation.[5]
- We call a “Diophantine equation” to an equation of the form, \(f(x_1, x_2, \ldots x_n) = 0\) where \(n \geq 2\) and \(x_1, x_2, \ldots x_n\) are integer variables.[6]
- Hilbert's 10th problem asked if an algorithm existed for determining whether an arbitrary Diophantine equation has a solution.[7]
- We exhibit a collection of (probably infinitely many) rational numbers k for which this Diophantine equation is satisfied.[8]
- Brindza, B.: On a diophantine equation connected with the Fermat equation.[9]
소스
- ↑ 이동: 1.0 1.1 Diophantine equation | mathematics
- ↑ 이동: 2.0 2.1 2.2 5.1: Linear Diophantine Equations
- ↑ 이동: 3.0 3.1 3.2 3.3 Art of Problem Solving
- ↑ 이동: 4.0 4.1 Famous Diophantine Equations
- ↑ 이동: 5.0 5.1 5.2 5.3 Diophantine equation
- ↑ Diophantine — SymPy 1.7.1 documentation
- ↑ Diophantine Equation -- from Wolfram MathWorld
- ↑ On the Diophantine Equation x^6+ky^3=z^6+kw^3
- ↑ Zeros of polynomials and exponential diophantine equations
메타데이터
위키데이터
- ID : Q905896
Spacy 패턴 목록
- [{'LOWER': 'diophantine'}, {'LEMMA': 'equation'}]
- [{'LOWER': 'diophantic'}, {'LEMMA': 'equation'}]