"등차수열의 소수분포에 관한 디리클레 정리"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
69번째 줄: 69번째 줄:
 
<h5>군표현론</h5>
 
<h5>군표현론</h5>
  
* <math>(\mathbb{Z}/n\mathbb{Z})^\times</math>는 유한생성아벨군의 기본정리에 의하여, 순환군의 곱으로 분해할 수 있음.
+
* <math>G=(\mathbb{Z}/n\mathbb{Z})^\times</math>는 유한생성아벨군의 기본정리에 의하여, 순환군의 곱으로 분해할 수 있음.
 
* [[순환군과 유한아벨군의 표현론|순환군의 표현론]] 참조
 
* [[순환군과 유한아벨군의 표현론|순환군의 표현론]] 참조
 +
* [[유한군의 표현론]]
 +
 +
 
  
 
 
 
 
97번째 줄: 100번째 줄:
  
 
* [[수학사연표 (역사)|수학사연표]]
 
* [[수학사연표 (역사)|수학사연표]]
 +
* 1837 - 디리클레가 [[3304643#|등차수열의 소수분포에 관한 디리클레 정리]]를 증명
 +
* [http://en.wikipedia.org/wiki/1859 1859] - 리만이 [[리만가설]]을 발표
  
 
 
 
 
112번째 줄: 117번째 줄:
 
* [[이차 수체에 대한 디리클레 class number 공식 |이차 수체에 대한 디리클레 class number 공식]]
 
* [[이차 수체에 대한 디리클레 class number 공식 |이차 수체에 대한 디리클레 class number 공식]]
 
* [[프로베니우스와 체보타레프 밀도(density) 정리|Chebotarev density theorem]]
 
* [[프로베니우스와 체보타레프 밀도(density) 정리|Chebotarev density theorem]]
 +
* [[푸리에 변환]]
 +
*  
 +
 +
 
  
 
 
 
 

2009년 11월 17일 (화) 18:32 판

이 항목의 스프링노트 원문주소

 

 

간단한 소개

(정리) 디리클레, 1837

자연수 a, b 가 서로 소이면 등차수열 {an+b} (n=0,1,2,…) 는 무한히 많은 소수를 포함한다

  • 4로 나눈 나머지가 1인 소수는 무한히 많다
  • 7로 나눈 나머지가 5인 소수는 무한히 많다
  •  h 와 k 가 서로 소일 때, h로 나눠서 k가 남는 소수는 무한히 많다.

 

 

증명의 재료
  • 푸리에 해석(군표현론) 과 L-function 의 아이디어를 결합시킴.

 

 

간략한 아이디어 소개

\(\sum_{p \text{:prime}} \frac{1}{p}=\infty\) 임은 이미 소수와 리만제타함수 를 통해 알고 있음.

이 사실은 소수가 무한히 많음을 말해줌.

이 아이디어와 군표현론의 아이디어를 결합.

준동형사상 \(\chi \colon(\mathbb{Z}/4\mathbb{Z})^\times \to \mathbb C^{*}\) 는 두 가지 경우가 가능.

\(\chi_0(3)=1\) 인 경우

\(\chi_1(3)=-1\) 인 경우

 

자연수 위에 정의된 함수 \(f\) 가 있어, 다음 두 조건을 만족시킨다고 하자.

\(f(n) = 1 \mbox{ if } n\equiv 3 \pmod{4} \)

\(f(n) = 0 \mbox{ if } n\equiv 0,1,2 \pmod{4}\)

\(f(n) ={\chi_0(n) - \chi_1(n) \over 2}\)  을 만족한다.

 \(\sum_{p \text{:prime } \equiv 3 \pmod 4} \frac{1}{p} = \sum_{p \text{:prime}} \frac{f(p)}{p}={1\over 2 }\sum_{p \text{:prime}} \frac{\chi_0(p) - \chi_1(p)}{p} \approx {1\over 2 }(\sum_{p \text{:prime}} \frac{\chi_0(p)}{p} - \sum_{p \text{:prime}} \frac{\chi_1(p)}{p}})\)

우변의 첫번째 항은 \(1 \,+\, \frac{1}{3} \,+\, \frac{1}{5} \,+\, \frac{1}{7} \,+\, \frac{1}{9} \,+\, \cdots = \infty\) 에 의해 발산함을 안다.

우변의 두번째 항은 \(1 \,-\, \frac{1}{3} \,+\, \frac{1}{5} \,-\, \frac{1}{7} \,+\, \frac{1}{9} \,-\, \cdots \;=\; \frac{\pi}{4}\)에 의해 수렴함을 안다. 이는 라이프니츠 급수,

따라서 4로 나누어 나머지가 3이 되는 소수가 무한함을 알 수 있음

마찬가지로 f를 적당히 바꿔준다면, 4로 나누어 1이 되는 소수가 무한함도 역시 같은 방법으로 보일 수 있음.

 

 

군표현론

 

 

 

메모

\(\sum_{n\geq 1}\frac{1}{n^s}= \left(1 + \frac{1}{2^s} + \frac{1}{4^s} + \cdots \right) \left(1 + \frac{1}{3^s} + \frac{1}{9^s} + \cdots \right) \cdots \left(1 + \frac{1}{p^s} + \frac{1}{p^{2s}} + \cdots \right) \cdots\)

\(\zeta(s) =\prod_{p \text{:prime}} \frac{1}{1-p^{-s}}\)

\(\log \zeta(s) = \log \prod_{p \text{:prime}} \frac{1}{1-p^{-s}} =\sum_{p \text{:prime}} -\log (1-p^{-s})\)

\(\log(1+x) \approx x\)

\(\log \zeta(s) = \sum_{p \text{:prime}} -\log (1-p^{-s})\approx \sum_{p \text{:prime}} \ p^{-s}=\sum_{p \text{:prime}} \frac{1}{p^s}\)

\(\sum_{p \text{:prime}} \frac{1}{p}=\infty\)

 

 

역사

 

 

관련된 고교수학 또는 대학수학

 

관련된 다른 주제들

 

 

관련도서 및 추천도서

 

 

참고할만한 자료

 

 

블로그