"무리수와 초월수"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
36번째 줄: | 36번째 줄: | ||
* [[자연상수 e는 초월수이다]]<br> | * [[자연상수 e는 초월수이다]]<br> | ||
* [[타원적분]]<br> | * [[타원적분]]<br> | ||
+ | * 겔폰드 상수 <math>e^\pi</math> [[겔폰드-슈나이더 정리]]<br> | ||
* [[감마함수]]의 유리수에서의 값<br><math>\Gamma(\frac{1}{3})</math>, <math>\Gamma(\frac{2}{3})</math>, <math>\Gamma(\frac{1}{4})</math>, <math>\Gamma(\frac{3}{4})</math>, <math>\Gamma(\frac{1}{6})</math>, <math>\Gamma(\frac{5}{6})</math><br> | * [[감마함수]]의 유리수에서의 값<br><math>\Gamma(\frac{1}{3})</math>, <math>\Gamma(\frac{2}{3})</math>, <math>\Gamma(\frac{1}{4})</math>, <math>\Gamma(\frac{3}{4})</math>, <math>\Gamma(\frac{1}{6})</math>, <math>\Gamma(\frac{5}{6})</math><br> | ||
* [[오일러 베타적분(베타함수)|오일러 베타적분]]<br><math>a,b,a+b \in \mathbb{Q-Z}</math> 이면 <math>B(a,b)</math> 는 초월수이다<br> | * [[오일러 베타적분(베타함수)|오일러 베타적분]]<br><math>a,b,a+b \in \mathbb{Q-Z}</math> 이면 <math>B(a,b)</math> 는 초월수이다<br> | ||
76번째 줄: | 77번째 줄: | ||
http://numbers.computation.free.fr/Constants/Miscellaneous/irrationality.html | http://numbers.computation.free.fr/Constants/Miscellaneous/irrationality.html | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
112번째 줄: | 101번째 줄: | ||
** [[린데만-바이어슈트라스 정리]]<br> | ** [[린데만-바이어슈트라스 정리]]<br> | ||
** [[베이커의 정리]]<br> | ** [[베이커의 정리]]<br> | ||
+ | |||
+ | |||
187번째 줄: | 178번째 줄: | ||
* [http://mathdl.maa.org/mathDL/?pa=content&sa=viewDocument&nodeId=2886 Similarities in Irrationality Proofs for π, ln2, ζ(2), and ζ(3)]<br> | * [http://mathdl.maa.org/mathDL/?pa=content&sa=viewDocument&nodeId=2886 Similarities in Irrationality Proofs for π, ln2, ζ(2), and ζ(3)]<br> | ||
** Dirk Huylebrouck, The American Mathematical Monthly,Vol. 108, March 2001 pp. 222-231 | ** Dirk Huylebrouck, The American Mathematical Monthly,Vol. 108, March 2001 pp. 222-231 | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
211번째 줄: | 191번째 줄: | ||
** [http://www.math.sc.edu/%7Efilaseta/gradcourses/Math785/Math785Notes8.pdf The Gelfond-Schneider Theorem and Some Related Results] | ** [http://www.math.sc.edu/%7Efilaseta/gradcourses/Math785/Math785Notes8.pdf The Gelfond-Schneider Theorem and Some Related Results] | ||
* http://modular.math.washington.edu/swc/aws/08/ | * http://modular.math.washington.edu/swc/aws/08/ | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련기사</h5> | ||
+ | |||
+ | * 네이버 뉴스 검색 (키워드 수정)<br> | ||
+ | ** [http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=%EC%B4%88%EC%9B%94%EC%88%98 http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=초월수] | ||
+ | ** [http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=%EB%AC%B4%EB%A6%AC%EC%88%98 http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=무리수] | ||
+ | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query= | ||
2010년 7월 28일 (수) 16:09 판
이 항목의 스프링노트 원문주소
개요
- 복소수 중에서 어떠한 유리수 계수방정식도 만족시킬 수 없는 수를 초월수라 함
- 유리수 계수방정식은 적당한 정수를 곱하여 다음과 같은 형태의 정수계수방정식으로 표현할 수도 있음.
\(a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \cdots + a_1 x + a_0 = 0, a_i \in \mathbb{Z}\) - 복소수 중에서 어떠한 정수계수방정식도 만족시킬 수 없는 수를 초월수라 해도 무방
- 유리수 계수방정식은 적당한 정수를 곱하여 다음과 같은 형태의 정수계수방정식으로 표현할 수도 있음.
무리수의 예
초월수의 예
- 파이는 초월수이다
- 자연상수 e는 초월수이다
- 타원적분
- 겔폰드 상수 \(e^\pi\) 겔폰드-슈나이더 정리
- 감마함수의 유리수에서의 값
\(\Gamma(\frac{1}{3})\), \(\Gamma(\frac{2}{3})\), \(\Gamma(\frac{1}{4})\), \(\Gamma(\frac{3}{4})\), \(\Gamma(\frac{1}{6})\), \(\Gamma(\frac{5}{6})\) - 오일러 베타적분
\(a,b,a+b \in \mathbb{Q-Z}\) 이면 \(B(a,b)\) 는 초월수이다
일차독립과 대수적독립
린데만-바이어슈트라스 정리
겔폰드-슈나이더 정리
베이커의 정리
메모
http://numbers.computation.free.fr/Constants/Miscellaneous/irrationality.html
관련된 고교수학 또는 대학수학
하위페이지
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/초월수
- http://en.wikipedia.org/wiki/Thue–Siegel–Roth_theorem
- http://en.wikipedia.org/wiki/Gelfond-Schneider_theorem
- http://en.wikipedia.org/wiki/Particular_values_of_the_Gamma_function
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련도서
- On the Algebraic Independence of Numbers
- Yu.V. Nesterenko, in A panorama in number theory, or, The view from Baker's garden (by Alan Baker,Gisbert Wüstholz), 2002
- Yu.V. Nesterenko, in A panorama in number theory, or, The view from Baker's garden (by Alan Baker,Gisbert Wüstholz), 2002
- Introduction to algebraic independence theory
- Valentinovich Nesterenko,Patrice Philippo, 2001
- Transcendental Number Theory
- Alan Baker, Cambridge University Press
- Alan Baker, Cambridge University Press
- Making Transcendence Transparent: An intuitive approach to classical transcendental number theory
- Edward B. Burger, Robert Tubbs, Springer
- Edward B. Burger, Robert Tubbs, Springer
- Transcendental Numbers
- C.L.Siegel
- C.L.Siegel
- 도서내검색
- 도서검색
관련논문
- Similarities in Irrationality Proofs for π, ln2, ζ(2), and ζ(3)
- Dirk Huylebrouck, The American Mathematical Monthly,Vol. 108, March 2001 pp. 222-231
관련링크 및 웹페이지
- Introduction to Diophantine methods: irrationality and transcendence
- Transcendental number theory
- Michael Filaseta Lecture notes
- Lindemann's Theorem
- The Gelfond-Schneider Theorem and Some Related Results
- http://modular.math.washington.edu/swc/aws/08/
관련기사
- 네이버 뉴스 검색 (키워드 수정)
블로그
- 무리수이야기
- 정경훈, 네이버 오늘의 과학, 2009-6-9
- 정경훈, 네이버 오늘의 과학, 2009-6-9