"무리수와 초월수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
잔글 (찾아 바꾸기 – “<h5 (.*)">” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소==
+
==이 항목의 스프링노트 원문주소==
  
 
* [[무리수와 초월수]]
 
* [[무리수와 초월수]]
20번째 줄: 20번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">무리수의 예==
+
==무리수의 예==
  
 
* [[루트2는 무리수이다]]<br>
 
* [[루트2는 무리수이다]]<br>
31번째 줄: 31번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">초월수의 예==
+
==초월수의 예==
  
 
* [[파이 π는 초월수이다|파이는 초월수이다]]<br>
 
* [[파이 π는 초월수이다|파이는 초월수이다]]<br>
45번째 줄: 45번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">일차독립과 대수적독립==
+
==일차독립과 대수적독립==
  
 
 
 
 
51번째 줄: 51번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">린데만-바이어슈트라스 정리==
+
==린데만-바이어슈트라스 정리==
  
 
* [[린데만-바이어슈트라스 정리]]<br> 대수적 수 <math>\alpha_1,\cdots,\alpha_n</math> 가 유리수체 위에서 선형독립이면, <math>e^{\alpha_1},\cdots,e^{\alpha_n}</math> 는 유리수체 위에서 대수적으로 독립이다. 즉, 유리수체의 확장체 <math>\mathbb{Q}(e^{\alpha_1},\cdots,e^{\alpha_n})</math>의 transcendence degree가 n이다.<br>
 
* [[린데만-바이어슈트라스 정리]]<br> 대수적 수 <math>\alpha_1,\cdots,\alpha_n</math> 가 유리수체 위에서 선형독립이면, <math>e^{\alpha_1},\cdots,e^{\alpha_n}</math> 는 유리수체 위에서 대수적으로 독립이다. 즉, 유리수체의 확장체 <math>\mathbb{Q}(e^{\alpha_1},\cdots,e^{\alpha_n})</math>의 transcendence degree가 n이다.<br>
76번째 줄: 76번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모==
+
==메모==
  
 
* http://numbers.computation.free.fr/Constants/Miscellaneous/irrationality.html<br>
 
* http://numbers.computation.free.fr/Constants/Miscellaneous/irrationality.html<br>
87번째 줄: 87번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 고교수학 또는 대학수학==
+
==관련된 고교수학 또는 대학수학==
  
 
* [[대수적수론]]<br>
 
* [[대수적수론]]<br>
117번째 줄: 117번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들==
+
==관련된 항목들==
  
 
* [[불가능성의 정리들]]
 
* [[불가능성의 정리들]]
130번째 줄: 130번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역==
+
==수학용어번역==
  
 
* http://www.google.com/dictionary?langpair=en|ko&q=
 
* http://www.google.com/dictionary?langpair=en|ko&q=
141번째 줄: 141번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료==
+
==사전 형태의 자료==
  
 
* [http://ko.wikipedia.org/wiki/%EC%B4%88%EC%9B%94%EC%88%98 http://ko.wikipedia.org/wiki/초월수]
 
* [http://ko.wikipedia.org/wiki/%EC%B4%88%EC%9B%94%EC%88%98 http://ko.wikipedia.org/wiki/초월수]
159번째 줄: 159번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서==
+
==관련도서==
  
 
* [http://books.google.com/books?id=Up-XxkiTtdsC&pg=PA148&lpg=PA148&dq=On+the+Algebraic+Independence+of+Numbers+Yu.V.+Nesterenko&source=bl&ots=yOVhiH5ukL&sig=x0GqVIluMqw-_Iaf3tXtKxam50Q&hl=ko&ei=KIwRTPiwB4rcNcSE8ccF&sa=X&oi=book_result&ct=result&resnum=3&ved=0CCQQ6AEwAg#v=onepage&q=On%20the%20Algebraic%20Independence%20of%20Numbers%20Yu.V.%20Nesterenko&f=false On the Algebraic Independence of Numbers]<br>
 
* [http://books.google.com/books?id=Up-XxkiTtdsC&pg=PA148&lpg=PA148&dq=On+the+Algebraic+Independence+of+Numbers+Yu.V.+Nesterenko&source=bl&ots=yOVhiH5ukL&sig=x0GqVIluMqw-_Iaf3tXtKxam50Q&hl=ko&ei=KIwRTPiwB4rcNcSE8ccF&sa=X&oi=book_result&ct=result&resnum=3&ved=0CCQQ6AEwAg#v=onepage&q=On%20the%20Algebraic%20Independence%20of%20Numbers%20Yu.V.%20Nesterenko&f=false On the Algebraic Independence of Numbers]<br>
185번째 줄: 185번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문==
+
==관련논문==
  
 
* [http://mathdl.maa.org/mathDL/?pa=content&sa=viewDocument&nodeId=2886 Similarities in Irrationality Proofs for π, ln2, ζ(2), and ζ(3)]<br>
 
* [http://mathdl.maa.org/mathDL/?pa=content&sa=viewDocument&nodeId=2886 Similarities in Irrationality Proofs for π, ln2, ζ(2), and ζ(3)]<br>
209번째 줄: 209번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련기사==
+
==관련기사==
  
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
*  네이버 뉴스 검색 (키워드 수정)<br>
220번째 줄: 220번째 줄:
 
 
 
 
  
<h5 style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; line-height: 2em;">블로그==
+
==블로그==
  
 
* [http://navercast.naver.com/science/math/561 무리수이야기]<br>
 
* [http://navercast.naver.com/science/math/561 무리수이야기]<br>
 
**  정경훈, 네이버 오늘의 과학, 2009-6-9<br>
 
**  정경훈, 네이버 오늘의 과학, 2009-6-9<br>

2012년 11월 1일 (목) 13:26 판

이 항목의 스프링노트 원문주소

 

 

개요

  • 복소수 중에서 어떠한 유리수 계수방정식도 만족시킬 수 없는 수를 초월수라 함
    • 유리수 계수방정식은 적당한 정수를 곱하여 다음과 같은 형태의 정수계수방정식으로 표현할 수도 있음.
      \(a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \cdots + a_1 x + a_0 = 0, a_i \in \mathbb{Z}\)
    • 복소수 중에서 어떠한 정수계수방정식도 만족시킬 수 없는 수를 초월수라 해도 무방
  • 대수적수론 에 비해 훨씬 어렵고, 체계적인 이론이 확립되어 있지 않음.
  • 보통 period나 regulator로 얻어지는 수가 초월수인지에 관심을 가짐

 

 

무리수의 예

 

 

초월수의 예

 

 

일차독립과 대수적독립

 

 

린데만-바이어슈트라스 정리

  • 린데만-바이어슈트라스 정리
    대수적 수 \(\alpha_1,\cdots,\alpha_n\) 가 유리수체 위에서 선형독립이면, \(e^{\alpha_1},\cdots,e^{\alpha_n}\) 는 유리수체 위에서 대수적으로 독립이다. 즉, 유리수체의 확장체 \(\mathbb{Q}(e^{\alpha_1},\cdots,e^{\alpha_n})\)의 transcendence degree가 n이다.

 

 

겔폰드-슈나이더 정리

  • (정리) 겔폰드-슈나이더, 1934
    \(\alpha \ne 0\),\(\alpha \ne 1\),\(\beta\notin \mathbb{Q}\) 인 복소수 \(\alpha\)와 \(\beta\) 가 대수적수이면, \(\alpha^{\beta} =e^{\beta \log \alpha\) 는 초월수이다.
  • 겔폰드-슈나이더 정리 항목 참조

 

 

베이커의 정리

 

 

메모

 

 

 

관련된 고교수학 또는 대학수학

 

 

 

하위페이지

 

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련도서

 

 

관련논문

 

 

관련링크 및 웹페이지

 

 

 

관련기사

 

 

블로그