디리클레 L-함수

수학노트
http://bomber0.myid.net/ (토론)님의 2010년 5월 26일 (수) 14:17 판
둘러보기로 가기 검색하러 가기
이 항목의 스프링노트 원문주소

 

 

간단한 소개
  • 리만제타함수의 일반화
  • primitive인(즉, q보다 작은 주기를 갖지 않는) 준동형사상 \(\chi \colon(\mathbb{Z}/q\mathbb{Z})^\times \to \mathbb C^{*}\) 에 대하여, 디리클레 L-함수를 다음과 같이 정의함.
    \(L(s, \chi) = \sum_{n\geq 1}\frac{\chi(n)}{n^s}, s>1\)
  • 위에 등장하는 준동형사상의 일반적인 이론에 대해서는 순환군의 표현론유한군의 표현론 항목을 참조

 

 

  • 리만제타함수\(q=1\),  \(\chi=1\) 인 경우
  • 디리클레 베타함수  \(q=4\), \(\chi(1)=1\),  \(\chi(-1)=-1\) 인 경우
  • 이차수체 \(K\), \(d_K\)는 판별식
    \(d_K\)를 나누지 않는 소수 \(p\)에 대하여 \(\chi(p)=\left(\frac{d_K}{p}\right)\) 를 만족시키는 준동형사상 \(\chi \colon(\mathbb{Z}/d_K\mathbb{Z})^\times \to \mathbb C^{*}\)
    다음과 같이 정의된 L-함수는 이차수체 \(K\)를 이해하는 중요한 도구. 이에 대해서는 데데킨트 제타함수 항목을 참조
    \(L_{d_K}(s):=L(s, \chi)\)

 

 

해석적 확장
  • 후르비츠 제타함수(Hurwitz zeta function)를 통한 방법이 있음
  • 리만제타함수의 해석적확장과 같이 멜린변환을 이용할 수 있음
  • 감마함수
    \(\Gamma(s) = \int_0^\infty e^{-t} t^{s} \frac{dt}{t}\), \(\int_0^\infty e^{-nt} t^{s} \frac{dt}{t} = \frac{\Gamma(s)}{n^s}\)
    \(\Gamma(s)L(s, \chi)= \int_0^\infty (\sum_{n\geq 1}\chi(n)e^{-nt})t^{s}\frac{dt}{t}\)
  • \(g(y)=\chi(1)y+\cdots+\chi(N-1)y^{n-1}\) 으로 두면,
    \(\sum_{n\geq 1}\chi(n)y^n=\frac{g(y)}{1-y^N}\), \((0<y<1)\)
  • \(g(y)\)는 \(y\)와 \(1-y\)를 인수로 가지므로, 적당한 다항식 \(h(y)\)에 대하여 \(g(y)=y(1-y)h(y)\)로 표현가능
    \(\sum_{n\geq 1}\chi(n)y^n=y(\frac{h(y)}{1+y+\cdots+y^{n-1}})=yk(y)\)
    여기서 \(k(y)\)는 \(C^{\infty}([0,1])\)이고 유계가 됨
  • 디리클레 L-함수는 다음을 만족시킴
    \(L(s, \chi)=\frac{1}{\Gamma(s)} \int_0^\infty k(e^{-t})e^{-t}t^{s}\frac{dt}{t}=\frac{1}{\Gamma(s)} \int_0^\infty l(t)e^{-t}t^{s}\frac{dt}{t}\)
  • 위의 식에서 \(l(t)\)와 그 도함수들은 유계인 함수이므로, 감마함수의 해석적확장에서와 마찬가지로, \(\int_0^\infty l(t)e^{-t}t^{s}\frac{dt}{t}\)는 \(s=0,-1,-2,\cdots\)에서 단순 pole을 갖게 된다.
  • 따라서 \(L(s, \chi)\)는 모든 복소평면에서 해석인 함수로 확장됨

 

 

함수방정식
  • L-함수를 약간 변형하여 다음과 같이 함수를 정의
    \(\Lambda(s,\chi)=(\frac{\pi}{q})^{-{(s+a_{\chi})}/{2}}\Gamma(\frac{s+a_{\chi}}{2})L(s,\chi)\)
  • 다음 함수방정식을 만족시킴
    \(\Lambda(1-s,\overline{\chi})=\frac{i^{a_{\chi}}\sqrt{q}}{\tau(\chi)}\Lambda(s,\chi)\)
  • 위에서 사용된 기호에 대한 설명
    \(a_{\chi}=\frac{1-\chi(-1)}{2}\)
    \(\chi(-1)=-1\) 이면  \(a_{\chi}=1\)
    \(\chi(-1)=1\) 이면 \(a_{\chi}=0\)
    \(\Gamma(s)\)는 감마함수
    \(\tau(\chi)=\sum_{(j,q)=1}\chi(j)e^{2\pi i j/q}\)는 가우스합
  • 디리클레 베타함수의 경우
    • \(q=4\),  \(\chi(-1)=-1\), \(a_{\chi}=1\) 인 경우에 해당
    • \(\Lambda(s)=(\frac{\pi}{4})^{-{(s+1)}/{2}}\Gamma(\frac{s+1}{2})\beta(s)\)
    • 가우스합은 \(\tau(\chi)=2i\)이므로 함수방정식은 다음과 같음
      \(\Lambda(s)=\Lambda(1-s)\)
  • \(\mathbb{Q}(\sqrt{-3})\)
    • \(q=3\), \(\chi(a)=\left(\frac{a}{q}\right)\),  \(\chi(-1)=-1\), \(a_{\chi}=1\) 인 경우에 해당
    • \(\Lambda(s)=(\frac{\pi}{3})^{-{(s+1)}/{2}}\Gamma(\frac{s+1}{2})L_{-3}(s)\)
    • 가우스합은 \(\tau(\chi)=\sqrt{3}i\) 이므로 함수방정식은 다음과 같음
      \(\Lambda(s)=\Lambda(1-s)\)

 

 

s=1 에서의 값  \(L(1,\chi)\)
  • \(s=1\) 에서의 값이 중요한 이유
  • 일반적으로 \(\chi\neq 1\)인 primitive 준동형사상 \(\chi \colon(\mathbb{Z}/f\mathbb{Z})^\times \to \mathbb C^{*}\)에 대하여 \(L(1,\chi)\)의 값은 다음과 같이 주어짐
    \(L(1,\chi)=-\frac{\tau(\chi)}{f}\sum_{(a,f)=1}}\bar\chi(a)\log(1-e^{-2\pi i a/f})\)
  • 여기서 \(\tau(\chi)\)에 대해서는 가우스합 항목 참조
    \(\tau_a(\chi)=\sum_{(j,f)=1}\chi(j)e^{2\pi i aj/f}\)
    \(\tau(\chi)=\tau_1(\chi)\)
  • 좀더 구체적으로 다음과 같이 쓸 수 있음
    • \(\chi(-1)=-1\) 인 경우
      \(L(1,\chi)= \frac{i \pi\tau(\chi)}{f^2}{\sum_{(a,q)=1}\bar\chi(a) a\)
    • \(\chi(-1)=1\) 인 경우
      \(L(1,\chi)=-\frac{\tau(\chi)}{f}\sum_{(a,q)=1}\bar\chi(a)\log(\sin \frac{a\pi}{f}})\)

 

 

\(s=0,-1,-2,\cdots\)   음의 정수일 때의 값

\(n\geq 1\) 이라 하자. 일반적으로 \(\chi\neq 1\)인 primitive 준동형사상 \(\chi \colon(\mathbb{Z}/f\mathbb{Z})^\times \to \mathbb C^{*}\)에 대하여 \(L(1-n,\chi)\)의 값은 다음과 같이 주어진다

\(L(1-n,\chi)=-\frac{f^{n-1}}{n}\sum_{(a,f)=1}}\chi(a)B_n(\frac{a}{f})\)

여기서 \(B_n(x)\) 는 베르누이 다항식(\(B_0(x)=1\), \(B_1(x)=x-1/2\), \(B_2(x)=x^2-x+1/6\), \(\cdots\))

 

 

이차잉여 준동형사상에 대한 \(L(1,\chi)\)

이차수체 \(K\), \(d_K\)는 판별식

\(d_K\)를 나누지 않는 소수 \(p\)에 대하여 준동형사상 \(\chi \colon(\mathbb{Z}/d_K\mathbb{Z})^\times \to \mathbb C^{*}\) 은 다음 조건에 의해 유일하게 결정됨

 \(\chi(p)=\left(\frac{d_K}{p}\right)\)

 

 

\(q \geq 2\) 는 소수라 가정하자.

 

\(K=\mathbb{Q}(\sqrt{-q})\), \(q \geq 3\) , \(q \equiv 3 \pmod{4}\) 인 경우

\(d_K=-q\)

\(\chi(a)=\left(\frac{a}{q}\right)\)

\(\chi(-1)=-1\), \(\tau(\chi)=i\sqrt{q}\)

\(L(1,\chi)= \frac{- \pi\sqrt{q}}{q^2}\sum_{a=1}^{q-1}\left(\frac{a}{q}\right) a\)

 

 

 \(K=\mathbb{Q}(\sqrt{q})\) , \(q \geq 5\),   \(q \equiv 1 \pmod{4}\) 인 경우

\(d_K=q\)

\(\chi(a)=\left(\frac{a}{q}\right)\)

\(\chi(-1)=1\), \(\tau(\chi)=\sqrt{q}\)

\(L(1,\chi)=-\frac{\sqrt{q}}{q}\sum_{a=1}^{q-1}\left(\frac{a}{q}\right)\log(\sin \frac{a\pi}{q}})\)

 

 

 

\(K=\mathbb{Q}(\sqrt{-q})\)  , \(q \geq 1\) ,  \(q \equiv 1 \pmod{4}\) 인 경우

\(d_K=-4q\)

\(\chi(-1)=-1\), \(\tau(\chi)=2i\sqrt{q}\)

소수 \(p \neq 2 , q\)에 대하여

\(p \equiv 1 \pmod{4}\)이면

\(\chi(p)=\left(\frac{-4q}{p}\right)=\left(\frac{-q}{p}\right)=\left(\frac{p}{q}\right)\)

\(p \equiv 3 \pmod{4}\)이면

\(\chi(p)=\left(\frac{-4q}{p}\right)=\left(\frac{-q}{p}\right)=-\left(\frac{p}{q}\right)\)

따라서

\(\chi(p)=\left(\frac{-1}{p}\right)\left(\frac{p}{q}\right)\)

일반적인

\(n\in \mathbb{Z}\), \((n,4q)=1\) 에 대해서는

\(\chi(n)=(-1)^{\frac{n-1}{2}}\left(\frac{n}{q}\right)\)

\(L(1,\chi)= -\frac{ \pi\sqrt{q}}{8q^2}{\sum_{(a,4q)=1}(-1)^{\frac{a-1}{2}}\left(\frac{a}{q}\right) a\)

 

 

 

 \(K=\mathbb{Q}(\sqrt{q})\) , \(q \geq 3\),   \(q \equiv 3 \pmod{4}\) 인 경우

\(d_K=4q\)

\(\chi(-1)=1\), \(\tau(\chi)=2\sqrt{q}\)

소수 \(p \neq 2 , q\)에 대하여

\(p \equiv 1 \pmod{4}\)이면

\(\chi(p)=\left(\frac{4q}{p}\right)=\left(\frac{q}{p}\right)=\left(\frac{p}{q}\right)\)

\(p \equiv 3 \pmod{4}\)이면

\(\chi(p)=\left(\frac{4q}{p}\right)=\left(\frac{q}{p}\right)=-\left(\frac{p}{q}\right)\)

따라서

\(\chi(p)=\left(\frac{-1}{p}\right)\left(\frac{p}{q}\right)\)

일반적인

\(n\in \mathbb{Z}\), \((n,4q)=1\) 에 대해서는

 

\(\chi(n)=(-1)^{\frac{n-1}{2}}\left(\frac{n}{q}\right)\)

\(L(1,\chi)=-\frac{1}{2\sqrt{q}}\sum_{(a,4q)=1}(-1)^{\frac{a-1}{2}}\left(\frac{a}{q}\right)\log(\sin \frac{a\pi}{4q}})\)

 

\(L'(1,\chi)\) 의 값
  • 복소이차수체 \(K\), \(d_K\)는 판별식
    \(L(1,\chi)=L_{d_K}(1)=\frac{2\pi h_K}{w_K \cdot \sqrt{|d_K|}}\)
    이차 수체에 대한 디리클레 class number 공식 
  • Chowla-셀베르그 공식
    \(L_{d_K}'(1)=\frac{2\pi h_K(\gamma+\ln 2\pi)}{w_K \cdot \sqrt{|d_K|}}-\frac{\pi}{\sqrt{|d_K|}}\sum_{(a,d_K)=1}\chi(a)\log\Gamma (\frac{a}{|d_K|})\)
    \(L_{-4}'(1)=\frac{\pi}{4}(\gamma+\ln 2\pi)-\frac{\pi}{2}\ln(\frac{\Gamma(1/4)}{\Gamma(3/4)})\)

 

 

이차잉여에의 응용

7이상의 소수 \(p \equiv 3 \pmod{4}\) 와  \(\chi(a)=$\left(\frac{a}{p}\right)\) 를 정의하자.

\(K=\mathbb{Q}(\sqrt{-p})\) 라 두면, \(d_K=-p\)이며  \(\chi(a)=$\left(\frac{a}{p}\right)\) 는  \(d_K\)를 나누지 않는 소수 \(p\)에 대하여 \(\chi(p)=\left(\frac{d_K}{p}\right)\) 를 만족시킨다. 

\(p \equiv 3 \pmod{4}\) 이므로  \(\chi(-1)=-1\)

\(L(1,\chi)=\frac{i\pi \tau(\chi)}{p}\sum_{a=1}^{p-1}\bar\chi(a)\frac{a}{p}=\frac{i\pi \tau(\chi)}{p}\sum_{a=1}^{p-1}\chi(a)\frac{a}{p}\)

를 얻고, 다른 한편으로 디리클레 class number 공식으로부터

\(L(1,\chi)=\frac{\pi h}{\sqrt p}\)

을 얻는다.

가우스합은 \(\tau (\chi)=i\sqrt p\) 이므로 위의 두 값을 비교하면, 

\(h=\frac{\sqrt p }{\pi}\frac{i\pi\tau(\chi)}{p}\sum_{a=1}^{p-1}\chi(a)\frac{a}{p}=-\sum_{a=1}^{p-1}(\frac{a}{p})\frac{a}{p}\)

이로부터 소수 \(p\)에 대하여 이차비잉여의 합이 이차잉여의 합보다 크다는 것을 알 수 있다.

 

 

 

L'(1)의 값과 정적분

\(f\)가 \(f(3)=-1\)인 주기가 4인 디리클레 캐릭터라고 하면, \(p(z)=z-z^3\)

\(L(s) = \sum_{n\geq 1}\frac{f(n)}{n^s}\)

\(L'(1)-\gamma \frac{\pi}{4}=\int_0^{1}\frac{z-z^3}{1-z^4}\log \log\frac{1}{z} \,\frac{dz}{z}=\int_0^{1}\log \log\frac{1}{z} \,\frac{dz}{1+z^2}=\int_1^{\infty}\log \log u \,\frac{du}{1+u^2}\)

\(=\int_{\pi/4}^{\pi/2} \ln \ln \tan x\, dx\)

 

이제 \(L'(1)\) 의 값을 구하면 된다. 

\(L(s)=4^{-s}\{\zeta(s,1/4)-\zeta(s,3/4)\}\) 와 Hurwitz 제타함수 의 에르미트 표현 \(\frac{\partial }{\partial s}\zeta(s,a)|_{s=0} =\log \frac{\Gamma(a)}{\sqrt{2\pi}}\)  을 사용하면,

\(L'(s)=4^{-s}\{\zeta(s,1/4)-\zeta(s,3/4)\}(-\log 4)+4^{-s}\{\zeta'(s,1/4)-\zeta'(s,3/4)\}\)

\(L'(0)=\{\zeta(0,1/4)-\zeta(0,3/4)\}(-\log 4)+\{\zeta'(0,1/4)-\zeta'(0,3/4)\}=-L(0)\log4+\log\frac{\Gamma(1/4)}{\Gamma(3/4)}\)

 

\(\Lambda(s)=(\frac{\pi}{4})^{-{(s+1)}/{2}}\Gamma(\frac{s+1}{2})L(s)\)

가 만족시키는 함수방정식

\(\Lambda(s)=\Lambda(1-s)\)

을 사용하자.

\(L(0)=\frac{1}{2}\) 을 쉽게 얻을 수 있다.

한편 Digamma 함수 의 값 \(\psi\left(\frac{1}{2}\right) = -2\ln{2} - \gamma\)에서 \(\Gamma'(1/2)=-\sqrt{\pi}(2\ln2+\gamma)\) 를 활용하여,

\(L_{-4}'(1)=\frac{\pi}{4}\gamma+\frac{\pi}{2}\ln(\frac{\Gamma(3/4)}{\Gamma(1/4)}\sqrt{2\pi})\)

를 얻는다. 

 

따라서

\(\int_{\pi/4}^{\pi/2} \ln \ln \tan x\, dx=L'(1)- \frac{\pi}{4}\gamma=\frac{\pi}{2}\ln({\frac{\Gamma(\frac{3}{4})}{\Gamma(\frac{1}{4})}\sqrt{2\pi})\)

 

 

재미있는 사실

 

 

 

역사

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그