체론(field theory)

수학노트
둘러보기로 가기 검색하러 가기

개요

  • 사칙연산을 할 수 있는 대수적 구조
  • 유리수, 실수, 복소수, 유한체, p-adic 체, function field 등
  • 5차방정식과 근의 공식을 이해하기 위한 기본적인 개념틀




체(field)의 정의

  • 체 \(<\mathbb{F}, +, \cdot, 0,1>\)
  • 집합 F와 더하기(+), 곱하기(·) 연산이 정의되어 있으며, 0과 1이라는 원소가 있어, 다음과 같은 조건을 만족시킴
  1. \((\mathbb{F}, +)\)는 아벨군이며 0은 항등원이다. 즉 덧셈에 대한 아벨군을 이룬다.
  2. \((\mathbb{F}^{*}, \cdot)\)는 아벨군이며 1은 항등원이다. 여기서 \(\mathbb{F}^{*}\)은 0을 제외한 원소들의 집합.
  3. 더하기와 곱하기는 분배법칙을 만족시킨다. 즉, 모든 원소 \(a,b,c\in \mathbb{F}\)에 대하여 \(a \cdot (b+c) = (a \cdot b) + (a \cdot c)\) 이 성립한다.



체확장

  • 체 K가 체 F를 포함할 때, 즉 \(F\subset K\)일때, K를 F의 체확장이라 한다



순환체확장(cyclic extension)



거듭제곱근 체확장(radical extension)




다항식과 갈루아체확장

  • (기약)다항식으로부터 얻어지는 해를 모두 추가하여 주어진 체를 확장시킬 수 있음
  • 유리수체 \(\mathbb{Q}\)에서 정의된 다항식 \(x^3-2=0\)
  • 해는 \(\sqrt[3]{2}, \omega\sqrt[3]{2}, \omega^2\sqrt[3]{2}\) 세 개가 존재
  • 유리수체 \(\mathbb{Q}\)에 \(\sqrt[3]{2}, \omega\sqrt[3]{2}, \omega^2\sqrt[3]{2}\)를 집어넣으면 유리수체의 확장 \(K=\mathbb{Q}(\omega, \sqrt[3]{2})\) 를 얻음
  • 이 때, 체 \(K\)는 유리수체 \(\mathbb{Q}\)위에 정의된 벡터공간이 되며, 벡터공간으로서의 차원은 \([K : \mathbb{Q}]=6\)이 됨




관련된 항목들





사전 형태의 자료




리뷰, 에세이, 강의노트


관련논문

  • Steinitz, Ernst. “Algebraische Theorie der Körper.” Journal für die reine und angewandte Mathematik 137 (1910): 167–309.

관련도서

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LEMMA': 'field'}]
  • [{'LOWER': 'algebraic'}, {'LEMMA': 'Field'}]