"수학사 연표"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
92번째 줄: 92번째 줄:
 
* [http://en.wikipedia.org/wiki/1806 1806] - [http://en.wikipedia.org/wiki/Louis_Poinsot Louis Poinsot] 이 나머지 두 개의 케플러-Poinsot 다면체를 발견(1619년을 볼 것)
 
* [http://en.wikipedia.org/wiki/1806 1806] - [http://en.wikipedia.org/wiki/Louis_Poinsot Louis Poinsot] 이 나머지 두 개의 케플러-Poinsot 다면체를 발견(1619년을 볼 것)
 
* [http://en.wikipedia.org/wiki/1806 1806] - [http://en.wikipedia.org/wiki/Jean-Robert_Argand Jean-Robert Argand] 가 [[대수학의 기본정리]]를 증명하고 [http://en.wikipedia.org/wiki/Argand_diagram Argand diagram] 을 발표함
 
* [http://en.wikipedia.org/wiki/1806 1806] - [http://en.wikipedia.org/wiki/Jean-Robert_Argand Jean-Robert Argand] 가 [[대수학의 기본정리]]를 증명하고 [http://en.wikipedia.org/wiki/Argand_diagram Argand diagram] 을 발표함
* 1807 - 푸리에가 함수의 삼각함수로의 분해를 발표, On the Propagation of Heat in Solid Bodies
+
* 1807 - 푸리에가 함수의 삼각함수로의 분해를 발표, On the Propagation of Heat in Solid Bodies [[푸리에 급수]], [[열방정식]]
 
* [http://en.wikipedia.org/wiki/1811 1811] - Carl Friedrich Gauss discusses the meaning of integrals with complex limits and briefly examines the dependence of such integrals on the chosen path of integration,
 
* [http://en.wikipedia.org/wiki/1811 1811] - Carl Friedrich Gauss discusses the meaning of integrals with complex limits and briefly examines the dependence of such integrals on the chosen path of integration,
 
* [http://en.wikipedia.org/wiki/1815 1815] - [http://en.wikipedia.org/wiki/Simeon_Poisson Siméon-Denis Poisson] carries out integrations along paths in the complex plane,
 
* [http://en.wikipedia.org/wiki/1815 1815] - [http://en.wikipedia.org/wiki/Simeon_Poisson Siméon-Denis Poisson] carries out integrations along paths in the complex plane,
115번째 줄: 115번째 줄:
 
* [http://en.wikipedia.org/wiki/1849 1849] - [http://en.wikipedia.org/wiki/George_Gabriel_Stokes George Gabriel Stokes] shows that [http://en.wikipedia.org/wiki/Soliton solitary waves] can arise from a combination of periodic waves,
 
* [http://en.wikipedia.org/wiki/1849 1849] - [http://en.wikipedia.org/wiki/George_Gabriel_Stokes George Gabriel Stokes] shows that [http://en.wikipedia.org/wiki/Soliton solitary waves] can arise from a combination of periodic waves,
 
* [http://en.wikipedia.org/wiki/1850 1850] - [http://en.wikipedia.org/wiki/Victor_Alexandre_Puiseux Victor Alexandre Puiseux] distinguishes between poles and branch points and introduces the concept of [http://en.wikipedia.org/wiki/Mathematical_singularity essential singular points],
 
* [http://en.wikipedia.org/wiki/1850 1850] - [http://en.wikipedia.org/wiki/Victor_Alexandre_Puiseux Victor Alexandre Puiseux] distinguishes between poles and branch points and introduces the concept of [http://en.wikipedia.org/wiki/Mathematical_singularity essential singular points],
* [http://en.wikipedia.org/wiki/1850 1850] - George Gabriel Stokes rediscovers and proves [http://en.wikipedia.org/wiki/Stokes%27_theorem Stokes' theorem],
+
* [http://en.wikipedia.org/wiki/1850 1850] - 스토크스가 [[스토크스 정리]] 를 재발견하고 증명함
 
* 1854 - 리만이 리만기하학을 소개
 
* 1854 - 리만이 리만기하학을 소개
 
* [http://en.wikipedia.org/wiki/1854 1854] - [http://en.wikipedia.org/wiki/Arthur_Cayley Arthur Cayley] shows that [http://en.wikipedia.org/wiki/Quaternion quaternions] can be used to represent rotations in four-dimensional [http://en.wikipedia.org/wiki/Space space],
 
* [http://en.wikipedia.org/wiki/1854 1854] - [http://en.wikipedia.org/wiki/Arthur_Cayley Arthur Cayley] shows that [http://en.wikipedia.org/wiki/Quaternion quaternions] can be used to represent rotations in four-dimensional [http://en.wikipedia.org/wiki/Space space],

2012년 7월 28일 (토) 17:39 판

 

15세기

 

 

 

16세기
  • 1545년 카르다노가 'Ars Magna' 를 출판

 

 

17세기

 

 


18세기


 

 

19세기


 

 

20세기

 

 

중요 수학 저술

 

 

 

관련링크와 웹페이지

 

관련도서

 

사전형태의 자료