"미분기하학"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<br><math>” 문자열을 “:<math>” 문자열로)
90번째 줄: 90번째 줄:
 
* 곡면의 접평면마다 내적이 주어진 것으로 이해할 수 있다
 
* 곡면의 접평면마다 내적이 주어진 것으로 이해할 수 있다
 
* 메트릭 텐서(metric tensor)라고도 한다
 
* 메트릭 텐서(metric tensor)라고도 한다
*  제1기본형식<br><math>ds^2 =(X_u du+X_v dv)\cdot (X_u du+X_v dv)= Edu^2+2Fdudv+Gdv^2</math><br>
+
*  제1기본형식:<math>ds^2 =(X_u du+X_v dv)\cdot (X_u du+X_v dv)= Edu^2+2Fdudv+Gdv^2</math><br>
*  면적소<br><math>dA=\sqrt{EG-F^2} \, du\, dv</math><br>
+
*  면적소:<math>dA=\sqrt{EG-F^2} \, du\, dv</math><br>
*  3차원의 곡면에 대해서는 다음과 같이 계산할 수 있다<br><math>g_{ij} : = X_i \cdot X_j</math><br><math>E=g_{11}</math>, <math>F=g_{12}=g_{21}</math>, <math>G=g_{22}</math><br><math>ds^2 =(X_u du+X_v dv)\cdot (X_u du+X_v dv)= Edu^2+2Fdudv+Gdv^2</math><br>
+
*  3차원의 곡면에 대해서는 다음과 같이 계산할 수 있다:<math>g_{ij} : = X_i \cdot X_j</math>:<math>E=g_{11}</math>, <math>F=g_{12}=g_{21}</math>, <math>G=g_{22}</math>:<math>ds^2 =(X_u du+X_v dv)\cdot (X_u du+X_v dv)= Edu^2+2Fdudv+Gdv^2</math><br>
  
 
 
 
 
102번째 줄: 102번째 줄:
 
* 방향미분의 일반화
 
* 방향미분의 일반화
 
* 벡터장 <math>{\mathbf v}</math>와 벡터장 <math> {\mathbf Y}</math>에 대해서 정의되며, 벡터장 <math>\nabla_{\mathbf v} {\mathbf Y}</math> 을 얻는다
 
* 벡터장 <math>{\mathbf v}</math>와 벡터장 <math> {\mathbf Y}</math>에 대해서 정의되며, 벡터장 <math>\nabla_{\mathbf v} {\mathbf Y}</math> 을 얻는다
*  다음 성질을 가진다<br><math>\begin{align}&\nabla_X(Y_1 + Y_2) = \nabla_XY_1 + \nabla_XY_2\\ &\nabla_{X_1 + X_2}Y = \nabla_{X_1}Y + \nabla_{X_2}Y\\ &\nabla_{X}(fY) = f\nabla_XY + X(f)Y\\ &\nabla_{fX}Y = f\nabla_XY\end{align}</math><br>
+
*  다음 성질을 가진다:<math>\begin{align}&\nabla_X(Y_1 + Y_2) = \nabla_XY_1 + \nabla_XY_2\\ &\nabla_{X_1 + X_2}Y = \nabla_{X_1}Y + \nabla_{X_2}Y\\ &\nabla_{X}(fY) = f\nabla_XY + X(f)Y\\ &\nabla_{fX}Y = f\nabla_XY\end{align}</math><br>
*  적당한 1-form <math>A_{ij}</math>에 대하여, 다음과 같이 표현할수 있다<br><math>\nabla X_i = \sum_{j=1}^{2} A_{ij}\otimes X_j= A_{i}^{j}\otimes X_j</math><br><math>A_{ij}= A_{i}^{j}</math> 로 두었다<br>
+
*  적당한 1-form <math>A_{ij}</math>에 대하여, 다음과 같이 표현할수 있다:<math>\nabla X_i = \sum_{j=1}^{2} A_{ij}\otimes X_j= A_{i}^{j}\otimes X_j</math>:<math>A_{ij}= A_{i}^{j}</math> 로 두었다<br>
*  여기서 1-form <math>A_{ij}</math>는 벡터장 <math>{\mathbf v}</math>에 대하여 다음을 만족시킴<br><math>\nabla_{\mathbf v} X_i = (\nabla X_i)({\mathbf v})= \sum_{j=1}^{2} A_{ij}({\mathbf v}) X_j</math><br>
+
*  여기서 1-form <math>A_{ij}</math>는 벡터장 <math>{\mathbf v}</math>에 대하여 다음을 만족시킴:<math>\nabla_{\mathbf v} X_i = (\nabla X_i)({\mathbf v})= \sum_{j=1}^{2} A_{ij}({\mathbf v}) X_j</math><br>
 
*  이때의 <math>A=(A_{ij})</math> 를 접속 1형식(1-form)이라고 부른다<br>
 
*  이때의 <math>A=(A_{ij})</math> 를 접속 1형식(1-form)이라고 부른다<br>
 
* <math>F=dA+A\wedge A</math> 는 곡률 2형식(2-form) 이라 부른다<br>
 
* <math>F=dA+A\wedge A</math> 는 곡률 2형식(2-form) 이라 부른다<br>
118번째 줄: 118번째 줄:
 
==크리스토펠 기호==
 
==크리스토펠 기호==
  
*  정의된 접속형식으로부터 다음과 같이 크리스토펠 기호 <math>{\Gamma^k}_{ij}</math>, <math>i,j,k\in\{1,2\}</math>를 정의한다<br><math>\nabla_iX_j = {\Gamma^k}_{ij}X_k</math><br>
+
*  정의된 접속형식으로부터 다음과 같이 크리스토펠 기호 <math>{\Gamma^k}_{ij}</math>, <math>i,j,k\in\{1,2\}</math>를 정의한다:<math>\nabla_iX_j = {\Gamma^k}_{ij}X_k</math><br>
*  접속형식 <math>A=(A_{ij})</math>을 통해서는 다음과 같이 표현할 수 있다<br><math>\nabla_i X_j = A_{j}^{k}(X_i) X_k</math><br> 즉 <math> A_{jk}(X_i)={\Gamma^k}_{ij}</math><br>
+
*  접속형식 <math>A=(A_{ij})</math>을 통해서는 다음과 같이 표현할 수 있다:<math>\nabla_i X_j = A_{j}^{k}(X_i) X_k</math><br> 즉 <math> A_{jk}(X_i)={\Gamma^k}_{ij}</math><br>
*  3차원 상의 매개화된 곡면의 경우에는 다음과 같이 얻어진다(아래의 *는 곡면에 수직한 성분을 뜻함)<br><math>X_{uu}=\Gamma^1_{11}X_u+\Gamma^2_{11}X_v+(*)</math><br><math>X_{uv}=\Gamma^1_{12}X_u+\Gamma^2_{12}X_v+(*)</math><br><math>X_{vu}=\Gamma^1_{21}X_u+\Gamma^2_{21}X_v+(*)</math><br><math>X_{vv}=\Gamma^1_{22}X_u+\Gamma^2_{22}X_v+(*)</math><br>
+
*  3차원 상의 매개화된 곡면의 경우에는 다음과 같이 얻어진다(아래의 *는 곡면에 수직한 성분을 뜻함):<math>X_{uu}=\Gamma^1_{11}X_u+\Gamma^2_{11}X_v+(*)</math>:<math>X_{uv}=\Gamma^1_{12}X_u+\Gamma^2_{12}X_v+(*)</math>:<math>X_{vu}=\Gamma^1_{21}X_u+\Gamma^2_{21}X_v+(*)</math>:<math>X_{vv}=\Gamma^1_{22}X_u+\Gamma^2_{22}X_v+(*)</math><br>
 
* 제1기본형식을 이용한 표현
 
* 제1기본형식을 이용한 표현
 
* [[크리스토펠 기호]] 항목 참조
 
* [[크리스토펠 기호]] 항목 참조
130번째 줄: 130번째 줄:
 
==공변미분(covariant derivative), 평행이동, 측지선==
 
==공변미분(covariant derivative), 평행이동, 측지선==
  
*  곡선 <math>\alpha : I \to M</math> 를 따라 정의된 벡터장 <math>Y</math>에 대하여, 공변미분은 다음과 같이 정의됨<br><math>\frac{DY}{dt}=\nabla_{\alpha'(t)}Y</math><br>
+
*  곡선 <math>\alpha : I \to M</math> 를 따라 정의된 벡터장 <math>Y</math>에 대하여, 공변미분은 다음과 같이 정의됨:<math>\frac{DY}{dt}=\nabla_{\alpha'(t)}Y</math><br>
 
* 곡선 <math>\alpha : I \to M</math> 를 따라 정의된 벡터장 <math>Y</math>에 대하여, 공변미분이 0이 되는 경우, 즉 <math>\nabla_{\alpha'(t)}Y=0</math> 인 경우, 벡터장 <math>Y</math>는 곡선 <math>\alpha</math>를 따라 평행하다고 한다
 
* 곡선 <math>\alpha : I \to M</math> 를 따라 정의된 벡터장 <math>Y</math>에 대하여, 공변미분이 0이 되는 경우, 즉 <math>\nabla_{\alpha'(t)}Y=0</math> 인 경우, 벡터장 <math>Y</math>는 곡선 <math>\alpha</math>를 따라 평행하다고 한다
 
* 곡선 <math>\alpha : I \to M</math>가  <math>\nabla_{\alpha'(t)}\alpha'(t)=0</math>를 만족시키는 경우, 곡선 <math>\alpha</math>를 이 곡면의 측지선이라 부른다
 
* 곡선 <math>\alpha : I \to M</math>가  <math>\nabla_{\alpha'(t)}\alpha'(t)=0</math>를 만족시키는 경우, 곡선 <math>\alpha</math>를 이 곡면의 측지선이라 부른다
*  coordinate chart 에서 <math>\alpha(t)=(\alpha_1(t),\alpha_2(t))</math> 로 표현되는 경우, 크리스토펠 기호를 쓰면 측지선은 다음 미분방정식을 만족시킨다<br><math>\frac{d^2\alpha_k }{dt^2} + \Gamma^{k}_{~i j }\frac{d\alpha_i }{dt}\frac{d\alpha_j }{dt} = 0</math><br>
+
*  coordinate chart 에서 <math>\alpha(t)=(\alpha_1(t),\alpha_2(t))</math> 로 표현되는 경우, 크리스토펠 기호를 쓰면 측지선은 다음 미분방정식을 만족시킨다:<math>\frac{d^2\alpha_k }{dt^2} + \Gamma^{k}_{~i j }\frac{d\alpha_i }{dt}\frac{d\alpha_j }{dt} = 0</math><br>
 
* [[측지선]]
 
* [[측지선]]
  
146번째 줄: 146번째 줄:
 
* 곡면에 정의된 가우스곡률은 곡선의 곡률과 마찬가지로, 곡면에 수직인 정규벡터(normal vector)의 변화와 관련된 개념
 
* 곡면에 정의된 가우스곡률은 곡선의 곡률과 마찬가지로, 곡면에 수직인 정규벡터(normal vector)의 변화와 관련된 개념
 
* 가우스의 정리는 이러한 곡률을 곡면의 제1기본형식을 통해서 표현할 수 있음을 말해준다
 
* 가우스의 정리는 이러한 곡률을 곡면의 제1기본형식을 통해서 표현할 수 있음을 말해준다
*  가우스곡률은 <math>F=0</math>인 제1기본형식에 대하여, 다음과 같이 주어진다<br><math>K = -\frac{1}{2\sqrt{EG}}\left(\frac{\partial}{\partial u}\frac{G_u}{\sqrt{EG}} + \frac{\partial}{\partial v}\frac{E_v}{\sqrt{EG}}\right)</math><br>
+
*  가우스곡률은 <math>F=0</math>인 제1기본형식에 대하여, 다음과 같이 주어진다:<math>K = -\frac{1}{2\sqrt{EG}}\left(\frac{\partial}{\partial u}\frac{G_u}{\sqrt{EG}} + \frac{\partial}{\partial v}\frac{E_v}{\sqrt{EG}}\right)</math><br>
 
* 곡률의 개념이 곡면이 3차원에 놓인 상태와는 무관하며, 곡면에서 측량할 수 있다는 사실을 말해줌
 
* 곡률의 개념이 곡면이 3차원에 놓인 상태와는 무관하며, 곡면에서 측량할 수 있다는 사실을 말해줌
 
* [[가우스의 놀라운 정리(Theorema Egregium)]] 항목 참조
 
* [[가우스의 놀라운 정리(Theorema Egregium)]] 항목 참조

2013년 1월 12일 (토) 09:41 판

이 항목의 스프링노트 원문주소

 

 

개요

  • 위상적으로는 국소적으로 유클리드 공간과 같으며, 그 위에 메트릭이 주어진 곡면의 기하학을 공부함.
  • 비유클리드기하학을 이해하는 틀을 배우게 된다
  • 미분형식을 이용하여 전개할 수도 있고, 미분형식의 언어를 사용하지 않고 크리스토펠 기호를 사용하여 전개할 수도 있다
    •  

 

 

선수 과목 또는 알고 있으면 좋은 것들

 

 

다루는 대상

  • 곡선
  • 곡면

 

중요한 개념 및 정리

 

 

곡면을 이해하는 두 가지 관점

  • 3차원 공간에 놓인 곡면
  • 3차원 공간을 생각하지 않고, 거리와 각도를 잴 수 있는 방식이 주어진 곡면
  • 학부 미분기하학에서는 곡면에 대한 첫번째 관점에서 두번째 관점으로의 이동을 배우게 됨

 

 

사용되는 언어

  • 텐서 해석학
  • 미분형식

 

 

매개화된 곡면

  • \(X(u,v)\)
  • 벡터장
  • \(X_1:=X_u\), \(X_2:=X_v\)

 

 

제1기본형식(first fundamental form)과 면적소

  • 곡면의 제1기본형식은 곡면 상에서 거리와 각도를 재는 방법에 해당한다
  • 곡면의 접평면마다 내적이 주어진 것으로 이해할 수 있다
  • 메트릭 텐서(metric tensor)라고도 한다
  • 제1기본형식\[ds^2 =(X_u du+X_v dv)\cdot (X_u du+X_v dv)= Edu^2+2Fdudv+Gdv^2\]
  • 면적소\[dA=\sqrt{EG-F^2} \, du\, dv\]
  • 3차원의 곡면에 대해서는 다음과 같이 계산할 수 있다\[g_{ij} : = X_i \cdot X_j\]\[E=g_{11}\], \(F=g_{12}=g_{21}\), \(G=g_{22}\)\[ds^2 =(X_u du+X_v dv)\cdot (X_u du+X_v dv)= Edu^2+2Fdudv+Gdv^2\]

 

 

접속(connection)

  • 방향미분의 일반화
  • 벡터장 \({\mathbf v}\)와 벡터장 \( {\mathbf Y}\)에 대해서 정의되며, 벡터장 \(\nabla_{\mathbf v} {\mathbf Y}\) 을 얻는다
  • 다음 성질을 가진다\[\begin{align}&\nabla_X(Y_1 + Y_2) = \nabla_XY_1 + \nabla_XY_2\\ &\nabla_{X_1 + X_2}Y = \nabla_{X_1}Y + \nabla_{X_2}Y\\ &\nabla_{X}(fY) = f\nabla_XY + X(f)Y\\ &\nabla_{fX}Y = f\nabla_XY\end{align}\]
  • 적당한 1-form \(A_{ij}\)에 대하여, 다음과 같이 표현할수 있다\[\nabla X_i = \sum_{j=1}^{2} A_{ij}\otimes X_j= A_{i}^{j}\otimes X_j\]\[A_{ij}= A_{i}^{j}\] 로 두었다
  • 여기서 1-form \(A_{ij}\)는 벡터장 \({\mathbf v}\)에 대하여 다음을 만족시킴\[\nabla_{\mathbf v} X_i = (\nabla X_i)({\mathbf v})= \sum_{j=1}^{2} A_{ij}({\mathbf v}) X_j\]
  • 이때의 \(A=(A_{ij})\) 를 접속 1형식(1-form)이라고 부른다
  • \(F=dA+A\wedge A\) 는 곡률 2형식(2-form) 이라 부른다
  • 3차원의 매개화된 곡면의 경우, 접속은  벡터장의 방향미분을 취한뒤, 곡면에 수직한 성분을 빼주는 것으로 얻어진다
  • 접속(connection) 항목 참조

 

 

 

크리스토펠 기호

  • 정의된 접속형식으로부터 다음과 같이 크리스토펠 기호 \({\Gamma^k}_{ij}\), \(i,j,k\in\{1,2\}\)를 정의한다\[\nabla_iX_j = {\Gamma^k}_{ij}X_k\]
  • 접속형식 \(A=(A_{ij})\)을 통해서는 다음과 같이 표현할 수 있다\[\nabla_i X_j = A_{j}^{k}(X_i) X_k\]
    즉 \( A_{jk}(X_i)={\Gamma^k}_{ij}\)
  • 3차원 상의 매개화된 곡면의 경우에는 다음과 같이 얻어진다(아래의 *는 곡면에 수직한 성분을 뜻함)\[X_{uu}=\Gamma^1_{11}X_u+\Gamma^2_{11}X_v+(*)\]\[X_{uv}=\Gamma^1_{12}X_u+\Gamma^2_{12}X_v+(*)\]\[X_{vu}=\Gamma^1_{21}X_u+\Gamma^2_{21}X_v+(*)\]\[X_{vv}=\Gamma^1_{22}X_u+\Gamma^2_{22}X_v+(*)\]
  • 제1기본형식을 이용한 표현
  • 크리스토펠 기호 항목 참조

 

 

공변미분(covariant derivative), 평행이동, 측지선

  • 곡선 \(\alpha : I \to M\) 를 따라 정의된 벡터장 \(Y\)에 대하여, 공변미분은 다음과 같이 정의됨\[\frac{DY}{dt}=\nabla_{\alpha'(t)}Y\]
  • 곡선 \(\alpha : I \to M\) 를 따라 정의된 벡터장 \(Y\)에 대하여, 공변미분이 0이 되는 경우, 즉 \(\nabla_{\alpha'(t)}Y=0\) 인 경우, 벡터장 \(Y\)는 곡선 \(\alpha\)를 따라 평행하다고 한다
  • 곡선 \(\alpha : I \to M\)가  \(\nabla_{\alpha'(t)}\alpha'(t)=0\)를 만족시키는 경우, 곡선 \(\alpha\)를 이 곡면의 측지선이라 부른다
  • coordinate chart 에서 \(\alpha(t)=(\alpha_1(t),\alpha_2(t))\) 로 표현되는 경우, 크리스토펠 기호를 쓰면 측지선은 다음 미분방정식을 만족시킨다\[\frac{d^2\alpha_k }{dt^2} + \Gamma^{k}_{~i j }\frac{d\alpha_i }{dt}\frac{d\alpha_j }{dt} = 0\]
  • 측지선

 

 

 

가우스곡률과 가우스의 정리

  • 곡면에 정의된 가우스곡률은 곡선의 곡률과 마찬가지로, 곡면에 수직인 정규벡터(normal vector)의 변화와 관련된 개념
  • 가우스의 정리는 이러한 곡률을 곡면의 제1기본형식을 통해서 표현할 수 있음을 말해준다
  • 가우스곡률은 \(F=0\)인 제1기본형식에 대하여, 다음과 같이 주어진다\[K = -\frac{1}{2\sqrt{EG}}\left(\frac{\partial}{\partial u}\frac{G_u}{\sqrt{EG}} + \frac{\partial}{\partial v}\frac{E_v}{\sqrt{EG}}\right)\]
  • 곡률의 개념이 곡면이 3차원에 놓인 상태와는 무관하며, 곡면에서 측량할 수 있다는 사실을 말해줌
  • 가우스의 놀라운 정리(Theorema Egregium) 항목 참조
  • 가우스곡률

 

 

곡면의 예

 

 

역사

 

 

메모

 

 

다른 과목과의 관련성

 

 

관련된 대학원 과목 또는 더 공부하면 좋은 것들

  • 미분다양체론(differentiable manifolds)
    • 다양체란 1차원 공간인 곡선, 2차원 공간인 곡면을 일반화한 n차원의 공간
    • 미분다양체는 미적분학을 할 수 있는 다양체를 뜻함
  • 리만기하학(Riemannian geometry)
    • 곡면에 메트릭을 주는 것을 일반화하여 메트릭이 주어진 미분다양체를 공부함
  • 리군과 Symmetric spaces의 분류

 

 

유명한 정리 혹은 재미있는 문제

 

 

관련된 항목들

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

표준적인 교과서

  • do Carmo, Manfredo (1976). Differential Geometry of Curves and Surfaces.

 

 

추천도서 및 보조교재