"미분방정식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
53번째 줄: 53번째 줄:
  
 
* [[팽르베 미분방정식(Painlevé Equations)|팽르베 미분방정식]]<br>
 
* [[팽르베 미분방정식(Painlevé Equations)|팽르베 미분방정식]]<br>
*  <br>[[바이어슈트라스 타원함수 ℘|바이어슈트라스의 타원함수]]<br><math>(\frac{dw}{dz})^2=4w^3-g_2w-g_3</math><br>
+
* [[바이어슈트라스 타원함수 ℘|바이어슈트라스의 타원함수]]<br><math>(\frac{dw}{dz})^2=4w^3-g_2w-g_3</math><br>
  
 
 
 
 
93번째 줄: 93번째 줄:
  
 
* qualitative study
 
* qualitative study
 +
 +
 
 +
 +
 
 +
 +
==== 하위페이지 ====
 +
 +
* [[미분방정식]]<br>
 +
** [[리만 미분방정식]]<br>
 +
** [[리카티 미분방정식]]<br>
 +
** [[맴돌이군과 미분방정식]]<br>
 +
** [[베르누이 미분방정식]]<br>
 +
** [[베셀 미분방정식]]<br>
 +
** [[상수계수 이계 선형미분방정식]]<br>
 +
** [[스텀-리우빌 이론]]<br>
 +
** [[오일러 미분방정식]]<br>
 +
** [[완전미분방정식]]<br>
 +
** [[이계 미분방정식]]<br>
 +
** [[일계 선형미분방정식]]<br>
 +
** [[치환적분과 변수분리형 미분방정식]]<br>
 +
** [[파동 방정식|파동방정식]]<br>
 +
** [[팽르베 미분방정식(Painlevé Equations)]]<br>
 +
** [[호인 미분방정식(Heun's equation)]]<br>
  
 
 
 
 

2010년 2월 1일 (월) 17:37 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 미분방정식은 자연현상을 기술하는 수학적인 언어
  • 함수를 계수로 하여 미지수가 되는 일변수 함수와 고계도함수 사이에 만족되는 방정식을 말함
  • 학부과정에서는 상미분방정식 과목과 편미분방정식이 있음
  • 미분방정식의 해를 적당한 클래스의 함수(가령 초등함수, 초등함수의 적분) 들을 이용하여 표현하는 문제(solvability, integrability, quadrature)

 

 

일계 미분방정식

 

 

이계 선형미분방정식
  • 호인 미분방정식(Heun's equation)
    \(\frac {d^2w}{dz^2} + \left[\frac{\gamma}{z}+ \frac{\delta}{z-1} + \frac{\epsilon}{z-d} \right] \frac {dw}{dz} + \frac {\alpha \beta z -q} {z(z-1)(z-d)} w = 0\) (여기서 \(\epsilon=\alpha+\beta-\gamma-\delta+1\))

 

 

비선형 미분방저식

 

 

스텀-리우빌

[[스텀-리우빌 이론|]]

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모
  • qualitative study

 

 

하위페이지

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서 및 추천도서

 

 

관련링크와 웹페이지

 

 

 

관련기사

 

 

블로그