"미분방정식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소==
  
 
* [[미분방정식]]
 
* [[미분방정식]]
7번째 줄: 7번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요==
  
 
* 미분방정식은 자연현상을 기술하는 수학적인 언어
 
* 미분방정식은 자연현상을 기술하는 수학적인 언어
22번째 줄: 22번째 줄:
 
 
 
 
  
==일계 미분방정식</h5>
+
==일계 미분방정식==
  
 
* [[일계 선형미분방정식|일계선형미분방정식]]<br><math>\frac{dy}{dt}+a(t)y=b(t)</math><br>
 
* [[일계 선형미분방정식|일계선형미분방정식]]<br><math>\frac{dy}{dt}+a(t)y=b(t)</math><br>
34번째 줄: 34번째 줄:
 
 
 
 
  
==이계 선형미분방정식</h5>
+
==이계 선형미분방정식==
  
 
*  다음 형태로 주어지는 미분방정식을 [[이계 선형 미분방정식|이계선형미분방정식]]이라 함<br><math>\frac{d^2y}{dx^2}+p(x)\frac{dy}{dx}+q(x)y=g(x)</math><br>
 
*  다음 형태로 주어지는 미분방정식을 [[이계 선형 미분방정식|이계선형미분방정식]]이라 함<br><math>\frac{d^2y}{dx^2}+p(x)\frac{dy}{dx}+q(x)y=g(x)</math><br>
54번째 줄: 54번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">비선형 미분방저식</h5>
+
<h5 style="margin: 0px; line-height: 2em;">비선형 미분방저식==
  
 
* [[팽르베 미분방정식(Painlevé Equations)|팽르베 미분방정식]]<br>
 
* [[팽르베 미분방정식(Painlevé Equations)|팽르베 미분방정식]]<br>
63번째 줄: 63번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">스텀-리우빌</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">스텀-리우빌==
  
 
* [[스텀-리우빌 이론]] 항목에서 자세히 다룸
 
* [[스텀-리우빌 이론]] 항목에서 자세히 다룸
73번째 줄: 73번째 줄:
 
 
 
 
  
==재미있는 사실</h5>
+
==재미있는 사실==
  
 
 
 
 
83번째 줄: 83번째 줄:
 
 
 
 
  
==역사</h5>
+
==역사==
  
 
 
 
 
94번째 줄: 94번째 줄:
 
 
 
 
  
==메모</h5>
+
==메모==
  
 
* qualitative study
 
* qualitative study
126번째 줄: 126번째 줄:
 
 
 
 
  
==관련된 항목들</h5>
+
==관련된 항목들==
  
 
* [[상미분방정식]]
 
* [[상미분방정식]]
138번째 줄: 138번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역==
  
 
* http://www.google.com/dictionary?langpair=en|ko&q=
 
* http://www.google.com/dictionary?langpair=en|ko&q=
149번째 줄: 149번째 줄:
 
 
 
 
  
==사전 형태의 자료</h5>
+
==사전 형태의 자료==
  
 
* [http://ko.wikipedia.org/wiki/%EC%83%81%EB%AF%B8%EB%B6%84_%EB%B0%A9%EC%A0%95%EC%8B%9D http://ko.wikipedia.org/wiki/상미분_방정식]
 
* [http://ko.wikipedia.org/wiki/%EC%83%81%EB%AF%B8%EB%B6%84_%EB%B0%A9%EC%A0%95%EC%8B%9D http://ko.wikipedia.org/wiki/상미분_방정식]
163번째 줄: 163번째 줄:
 
 
 
 
  
==관련논문</h5>
+
==관련논문==
  
 
* [http://www.jstor.org/stable/2687502 What It Means to Understand a Differential Equation]<br>
 
* [http://www.jstor.org/stable/2687502 What It Means to Understand a Differential Equation]<br>
183번째 줄: 183번째 줄:
 
 
 
 
  
==관련도서 및 추천도서</h5>
+
==관련도서 및 추천도서==
  
 
*  도서내검색<br>
 
*  도서내검색<br>
197번째 줄: 197번째 줄:
 
 
 
 
  
==관련링크와 웹페이지</h5>
+
==관련링크와 웹페이지==
  
 
* http://eqworld.ipmnet.ru/en/solutions/ode.htm
 
* http://eqworld.ipmnet.ru/en/solutions/ode.htm
207번째 줄: 207번째 줄:
 
 
 
 
  
==관련기사</h5>
+
==관련기사==
  
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
*  네이버 뉴스 검색 (키워드 수정)<br>
218번째 줄: 218번째 줄:
 
 
 
 
  
==블로그</h5>
+
==블로그==
  
 
*  구글 블로그 검색<br>
 
*  구글 블로그 검색<br>

2012년 11월 1일 (목) 12:49 판

이 항목의 스프링노트 원문주소==    
개요==
  • 미분방정식은 자연현상을 기술하는 수학적인 언어
  • 함수를 계수로 하여 미지수가 되는 일변수 함수와 고계도함수 사이에 만족되는 방정식을 말함
  • 학부과정에서는 상미분방정식 과목과 편미분방정식이 있음
  • 미분방정식의 해를 적당한 클래스의 함수(가령 초등함수, 초등함수의 적분) 들을 이용하여 표현하는 문제(solvability, integrability, quadrature)
  • 분류법
    • 미분방정식의 계(order)
    • 선형미분방정식과 비선형미분방정식
    • 상미분방정식과 편미분방정식
   

일계 미분방정식

 

 

이계 선형미분방정식

  • 호인 미분방정식(Heun's equation)
    \(\frac {d^2w}{dz^2} + \left[\frac{\gamma}{z}+ \frac{\delta}{z-1} + \frac{\epsilon}{z-d} \right] \frac {dw}{dz} + \frac {\alpha \beta z -q} {z(z-1)(z-d)} w = 0\) (여기서 \(\epsilon=\alpha+\beta-\gamma-\delta+1\))

 

 

비선형 미분방저식==    
스텀-리우빌== 스텀-리우빌 이론    

재미있는 사실

 

 

 

역사

 

 

 

메모

  • qualitative study

 

하위페이지

 

 

관련된 항목들

 

 

수학용어번역==    

사전 형태의 자료

 

 

관련논문

 

 

관련도서 및 추천도서

 

 

관련링크와 웹페이지

 

 

 

관련기사

 

 

블로그