"미분방정식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(→‎노트: 새 문단)
10번째 줄: 10번째 줄:
 
** 상미분방정식과 편미분방정식
 
** 상미분방정식과 편미분방정식
  
 
+
  
 
+
  
 
==일계 미분방정식==
 
==일계 미분방정식==
  
 
* [[일계 선형미분방정식|일계선형미분방정식]]:<math>\frac{dy}{dt}+a(t)y=b(t)</math>
 
* [[일계 선형미분방정식|일계선형미분방정식]]:<math>\frac{dy}{dt}+a(t)y=b(t)</math>
* [[완전미분방정식]]:<math>M_y=N_x</math>를 만족시키는 <math>M(x, y)\, dx + N(x, y)\, dy = 0</math>  꼴의 미분방정식
+
* [[완전미분방정식]]:<math>M_y=N_x</math>를 만족시키는 <math>M(x, y)\, dx + N(x, y)\, dy = 0</math> 꼴의 미분방정식
* 다음 미분방정식들은 비선형이다
+
* 다음 미분방정식들은 비선형이다
 
* [[리카티 미분방정식]]:<math>y' = A(x)+ B(x)y + C(x)y^2, A(x)\neq 0, C(x)\neq 0</math>
 
* [[리카티 미분방정식]]:<math>y' = A(x)+ B(x)y + C(x)y^2, A(x)\neq 0, C(x)\neq 0</math>
 
* [[베르누이 미분방정식]]:<math>y'+ P(x)y = Q(x)y^n</math>
 
* [[베르누이 미분방정식]]:<math>y'+ P(x)y = Q(x)y^n</math>
  
 
+
  
 
+
  
 
==이계 선형미분방정식==
 
==이계 선형미분방정식==
40번째 줄: 40번째 줄:
 
* [[리만 미분방정식]]:<math>\frac{d^2w}{dz^2} + \left[ \frac{1-\alpha-\alpha'}{z-a} + \frac{1-\beta-\beta'}{z-b} + \frac{1-\gamma-\gamma'}{z-c} \right] \frac{dw}{dz}+\left[ \frac{\alpha\alpha' (a-b)(a-c)} {z-a} +\frac{\beta\beta' (b-c)(b-a)} {z-b} +\frac{\gamma\gamma' (c-a)(c-b)} {z-c} \right] \frac{w}{(z-a)(z-b)(z-c)}=0</math> 여기서 <math>\alpha+\alpha'+\beta+\beta'+\gamma+\gamma'=1</math>
 
* [[리만 미분방정식]]:<math>\frac{d^2w}{dz^2} + \left[ \frac{1-\alpha-\alpha'}{z-a} + \frac{1-\beta-\beta'}{z-b} + \frac{1-\gamma-\gamma'}{z-c} \right] \frac{dw}{dz}+\left[ \frac{\alpha\alpha' (a-b)(a-c)} {z-a} +\frac{\beta\beta' (b-c)(b-a)} {z-b} +\frac{\gamma\gamma' (c-a)(c-b)} {z-c} \right] \frac{w}{(z-a)(z-b)(z-c)}=0</math> 여기서 <math>\alpha+\alpha'+\beta+\beta'+\gamma+\gamma'=1</math>
  
* [[호인 미분방정식(Heun's equation)]]:<math>\frac {d^2w}{dz^2} +  \left[\frac{\gamma}{z}+ \frac{\delta}{z-1} + \frac{\epsilon}{z-d} \right]  \frac {dw}{dz}  + \frac {\alpha \beta z -q} {z(z-1)(z-d)} w = 0</math> (여기서 <math>\epsilon=\alpha+\beta-\gamma-\delta+1</math>)
+
* [[호인 미분방정식(Heun's equation)]]:<math>\frac {d^2w}{dz^2} +  \left[\frac{\gamma}{z}+ \frac{\delta}{z-1} + \frac{\epsilon}{z-d} \right]  \frac {dw}{dz}  + \frac {\alpha \beta z -q} {z(z-1)(z-d)} w = 0</math> (여기서 <math>\epsilon=\alpha+\beta-\gamma-\delta+1</math>)
  
 
+
  
 
+
  
 
==비선형 미분방저식==
 
==비선형 미분방저식==
51번째 줄: 51번째 줄:
 
* [[바이어슈트라스 타원함수 ℘|바이어슈트라스의 타원함수]]:<math>(\frac{dw}{dz})^2=4w^3-g_2w-g_3</math>
 
* [[바이어슈트라스 타원함수 ℘|바이어슈트라스의 타원함수]]:<math>(\frac{dw}{dz})^2=4w^3-g_2w-g_3</math>
  
 
+
  
 
+
  
 
==스텀-리우빌==
 
==스텀-리우빌==
  
* [[스텀-리우빌 이론]] 항목에서 자세히 다룸
+
* [[스텀-리우빌 이론]] 항목에서 자세히 다룸
  
 
[[스텀-리우빌 이론|스텀-리우빌 이론]]
 
[[스텀-리우빌 이론|스텀-리우빌 이론]]
  
 
+
  
 
+
  
 
==재미있는 사실==
 
==재미있는 사실==
  
 
+
  
 
* 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
* 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
  
 
+
  
 
+
  
 
==역사==
 
==역사==
  
 
+
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=differential+equation
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=differential+equation
 
* [[수학사 연표]]
 
* [[수학사 연표]]
  
 
+
  
 
+
  
 
==메모==
 
==메모==
90번째 줄: 90번째 줄:
 
* qualitative study
 
* qualitative study
  
 
+
  
 
==== 하위페이지 ====
 
==== 하위페이지 ====
114번째 줄: 114번째 줄:
 
** [[호인 미분방정식(Heun's equation)]]
 
** [[호인 미분방정식(Heun's equation)]]
  
 
+
  
 
+
  
 
==관련된 항목들==
 
==관련된 항목들==
126번째 줄: 126번째 줄:
 
* [[불가능성의 정리들]]
 
* [[불가능성의 정리들]]
  
 
+
  
 
+
  
 
==수학용어번역==
 
==수학용어번역==
135번째 줄: 135번째 줄:
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
+
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
  
 
+
  
 
+
  
==사전 형태의 자료==
+
==사전 형태의 자료==
  
 
* [http://ko.wikipedia.org/wiki/%EC%83%81%EB%AF%B8%EB%B6%84_%EB%B0%A9%EC%A0%95%EC%8B%9D http://ko.wikipedia.org/wiki/상미분_방정식]
 
* [http://ko.wikipedia.org/wiki/%EC%83%81%EB%AF%B8%EB%B6%84_%EB%B0%A9%EC%A0%95%EC%8B%9D http://ko.wikipedia.org/wiki/상미분_방정식]
151번째 줄: 151번째 줄:
 
** http://www.research.att.com/~njas/sequences/?q=
 
** http://www.research.att.com/~njas/sequences/?q=
  
 
+
 
==리뷰, 에세이, 강의노트==
 
==리뷰, 에세이, 강의노트==
 
* [http://www.jstor.org/stable/2687502 What It Means to Understand a Differential Equation]
 
* [http://www.jstor.org/stable/2687502 What It Means to Understand a Differential Equation]
164번째 줄: 164번째 줄:
 
** T. Craig
 
** T. Craig
  
 
+
  
  
  
 
+
  
 
+
  
 
==관련링크와 웹페이지==
 
==관련링크와 웹페이지==
176번째 줄: 176번째 줄:
 
* http://eqworld.ipmnet.ru/en/solutions/ode.htm
 
* http://eqworld.ipmnet.ru/en/solutions/ode.htm
  
 
+
  
 
[[분류:미분방정식]]
 
[[분류:미분방정식]]

2020년 12월 28일 (월) 03:22 판

개요

  • 미분방정식은 자연현상을 기술하는 수학적인 언어
  • 함수를 계수로 하여 미지수가 되는 일변수 함수와 고계도함수 사이에 만족되는 방정식을 말함
  • 학부과정에서는 상미분방정식 과목과 편미분방정식이 있음
  • 미분방정식의 해를 적당한 클래스의 함수(가령 초등함수, 초등함수의 적분) 들을 이용하여 표현하는 문제(solvability, integrability, quadrature)
  • 분류법
    • 미분방정식의 계(order)
    • 선형미분방정식과 비선형미분방정식
    • 상미분방정식과 편미분방정식



일계 미분방정식



이계 선형미분방정식

  • 호인 미분방정식(Heun's equation)\[\frac {d^2w}{dz^2} + \left[\frac{\gamma}{z}+ \frac{\delta}{z-1} + \frac{\epsilon}{z-d} \right] \frac {dw}{dz} + \frac {\alpha \beta z -q} {z(z-1)(z-d)} w = 0\] (여기서 \(\epsilon=\alpha+\beta-\gamma-\delta+1\))



비선형 미분방저식



스텀-리우빌

스텀-리우빌 이론



재미있는 사실



역사



메모

  • qualitative study


하위페이지



관련된 항목들



수학용어번역



사전 형태의 자료


리뷰, 에세이, 강의노트





관련링크와 웹페이지

노트

위키데이터

말뭉치

  1. The Differential Equation says it well, but is hard to use.[1]
  2. Creating a differential equation is the first major step.[1]
  3. In Mathematics, a differential equation is an equation that contains one or more functions with its derivatives.[2]
  4. The primary purpose of the differential equation is the study of solutions that satisfy the equations and the properties of the solutions.[2]
  5. One of the easiest ways to solve the differential equation is by using explicit formulas.[2]
  6. A differential equation contains derivatives which are either partial derivatives or ordinary derivatives.[2]
  7. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two.[3]
  8. A partial differential equation (PDE) is a differential equation that contains unknown multivariable functions and their partial derivatives.[3]
  9. Conduction of heat, the theory of which was developed by Joseph Fourier, is governed by another second-order partial differential equation, the heat equation.[3]
  10. A differential equation is an equation involving a function and its derivatives.[4]
  11. It can be referred to as an ordinary differential equation (ODE) or a partial differential equation (PDE) depending on whether or not partial derivatives are involved.[4]
  12. The first definition that we should cover should be that of differential equation.[5]
  13. There is one differential equation that everybody probably knows, that is Newton’s Second Law of Motion.[5]
  14. A differential equation is called an ordinary differential equation, abbreviated by ode, if it has ordinary derivatives in it.[5]
  15. Likewise, a differential equation is called a partial differential equation, abbreviated by pde, if it has partial derivatives in it.[5]
  16. We also investigate how direction fields can be used to determine some information about the solution to a differential equation without actually having the solution.[6]
  17. Series Solutions – In this section we define ordinary and singular points for a differential equation.[6]
  18. We also show who to construct a series solution for a differential equation about an ordinary point.[6]
  19. rd order differential equation just to say that we looked at one with order higher than 2nd.[6]
  20. A differential equation is an equation involving derivatives.[7]
  21. You can find the general solution to any separable first order differential equation by integration, (or as it is sometimes referred to, by "quadrature").[7]
  22. Suppose we have a first order differential equation that is not separable, so we cannot reduce its solution to quadratures directly.[7]
  23. at least look at what a differential equation actually is.[8]
  24. And you might have just caught from how I described it that the solution to a differential equation is a function, or a class of functions.[8]
  25. We'll verify that these indeed are solutions for I guess this is really just one differential equation represented in different ways.[8]
  26. But you'll hopefully appreciate what a solution to a differential equation looks like.[8]
  27. Differential equation, mathematical statement containing one or more derivatives—that is, terms representing the rates of change of continuously varying quantities.[9]
  28. When the function involved in the equation depends on only a single variable, its derivatives are ordinary derivatives and the differential equation is classed as an ordinary differential equation.[9]
  29. On the other hand, if the function depends on several independent variables, so that its derivatives are partial derivatives, the differential equation is classed as a partial differential equation.[9]
  30. Whichever the type may be, a differential equation is said to be of the nth order if it involves a derivative of the nth order but no derivative of an order higher than this.[9]
  31. Learning Objectives Calculate the order and degree of a differential equation.[10]
  32. The higher the order of the differential equation, the more arbitrary constants need to be added to the general solution.[10]
  33. The “order” of a differential equation depends on the derivative of the highest order in the equation.[10]
  34. The “degree” of a differential equation, similarly, is determined by the highest exponent on any variables involved.[10]
  35. Also as we have seen so far, a differential equation typically has an infinite number of solutions.[11]
  36. Solve a differential equation analytically by using the dsolve function, with or without initial conditions.[12]
  37. First-Order Linear ODE Solve this differential equation.[12]
  38. Solve this third-order differential equation with three initial conditions.[12]
  39. The last example is the Airy differential equation, whose solution is called the Airy function.[12]
  40. Thus, one of the most common ways to use calculus is to set up an equation containing an unknown function \(y=f(x)\) and its derivative, known as a differential equation.[13]
  41. Combining like terms leads to the expression \(6x+11\), which is equal to the right-hand side of the differential equation.[13]
  42. A differential equation is an equation involving an unknown function \(y=f(x)\) and one or more of its derivatives.[13]
  43. Consider the equation \(y′=3x^2,\) which is an example of a differential equation because it includes a derivative.[13]
  44. A differential equation is an equation involving terms that are derivatives (or differentials).[14]
  45. A partial differential equation need not have any solution at all.[15]
  46. If the partial differential equation being considered is the Euler equation for a problem of variational calculus in more dimensions, a variational method is often employed.[15]
  47. The order of a partial differential equation is the order of the highest derivative involved.[16]
  48. A solution (or a particular solution) to a partial differential equation is a function that solves the equation or, in other words, turns it into an identity when substituted into the equation.[16]
  49. A differential equation can look pretty intimidating, with lots of fancy math symbols.[17]
  50. Each of those variables has a differential equation saying how that variable evolves over time.[17]
  51. The task is to find a function whose various derivatives fit the differential equation over a long span of time.[17]
  52. It is easy to confirm that you have a solution: just plug the solution in to the differential equation![17]
  53. The final few pages of this class will be devoted to an introduction to differential equation.[18]
  54. A differential equation is an equation (you will see an " = " sign) that has derivatives.[18]
  55. If y = f(x) is a solution to a differential equation, then if we plug " y " into the equation, we get a true statement.[18]
  56. We derive a second-order ordinary differential equation (ODE) which is the limit of Nesterov's accelerated gradient method.[19]
  57. The aim of this paper is to study a boundary value problem of the hybrid differential equation with linear and nonlinear perturbations.[20]
  58. The example of a cooling coffee cup is used to find the differential equation and solve it using differentiation.[21]
  59. If we solve a first order differential equation by variables separable method, we necessarily have to introduce an arbitrary constant as soon as the integration is performed.[22]
  60. Similarly, the general solution of a second order differential equation will contain 2 necessary arbitrary constants and so on.[22]
  61. A Particular Solution of a differential equation is a solution obtained from the General Solution by assigning specific values to the arbitrary constants.[22]
  62. The function f(t) must satisfy the differential equation in order to be a solution.[22]
  63. In this tutorial we will show you how to define an ordinary differential equation (ODE) in the Fitting function Builder dialog and perform a fit of the data using this fitting function.[23]
  64. In this tutorial, we will use a first order ordinary differential equation as an example: where a is a parameter in the ordinary differential equation and y0 is the initial value for the ODE.[23]

소스