"수학사 연표"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
102번째 줄: 102번째 줄:
 
* [http://en.wikipedia.org/wiki/1831 1831] - [http://en.wikipedia.org/wiki/Mikhail_Vasilievich_Ostrogradsky Mikhail Vasilievich Ostrogradsky] rediscovers and gives the first proof of the divergence theorem earlier described by Lagrange, Gauss and Green,
 
* [http://en.wikipedia.org/wiki/1831 1831] - [http://en.wikipedia.org/wiki/Mikhail_Vasilievich_Ostrogradsky Mikhail Vasilievich Ostrogradsky] rediscovers and gives the first proof of the divergence theorem earlier described by Lagrange, Gauss and Green,
 
* [http://en.wikipedia.org/wiki/1832 1832] - [http://en.wikipedia.org/wiki/%C3%89variste_Galois Évariste Galois] presents a general condition for the solvability of [http://en.wikipedia.org/wiki/Algebraic_equation algebraic equations], thereby essentially founding [http://en.wikipedia.org/wiki/Group_theory group theory] and [http://en.wikipedia.org/wiki/Galois_theory Galois theory],
 
* [http://en.wikipedia.org/wiki/1832 1832] - [http://en.wikipedia.org/wiki/%C3%89variste_Galois Évariste Galois] presents a general condition for the solvability of [http://en.wikipedia.org/wiki/Algebraic_equation algebraic equations], thereby essentially founding [http://en.wikipedia.org/wiki/Group_theory group theory] and [http://en.wikipedia.org/wiki/Galois_theory Galois theory],
* 1832 - 디리클레가 <em style="">n</em> = 14인 경우의 [[#|페르마의 마지막 정리]]를 증명
+
* 1832 - 디리클레가 <em style="">n</em> = 14인 경우의 [[페르마의 마지막 정리]]를 증명
 
* 1837 - 디리클레가 [[등차수열의 소수분포에 관한 디리클레 정리]]를 증명
 
* 1837 - 디리클레가 [[등차수열의 소수분포에 관한 디리클레 정리]]를 증명
 
* 1837 - 피에르 완첼([http://en.wikipedia.org/w/index.php?title=Pierre_Wantsel&action=edit&redlink=1 Pierre Wantsel])이 [[#|두배의 부피를 갖는 정육면체(The duplication of the cube)]]과 [[#|각의 3등분(The trisection of an angle)]] 문제가 자와 컴파스로 해결불가능임을 증명, as well as the full completion of the problem of constructability of regular polygons
 
* 1837 - 피에르 완첼([http://en.wikipedia.org/w/index.php?title=Pierre_Wantsel&action=edit&redlink=1 Pierre Wantsel])이 [[#|두배의 부피를 갖는 정육면체(The duplication of the cube)]]과 [[#|각의 3등분(The trisection of an angle)]] 문제가 자와 컴파스로 해결불가능임을 증명, as well as the full completion of the problem of constructability of regular polygons
* 1839 - 디리클레가 [[이차 수체에 대한 디리클레 class number 공식|class number 공식]] 을 증명함
+
* 1839 - 디리클레가 [[디리클레 유수 (class number) 공식]] 을 증명함
 
** http://en.wikipedia.org/wiki/Johann_Peter_Gustav_Lejeune_Dirichlet 참조
 
** http://en.wikipedia.org/wiki/Johann_Peter_Gustav_Lejeune_Dirichlet 참조
 
* [http://en.wikipedia.org/wiki/1841 1841] - [http://en.wikipedia.org/wiki/Karl_Weierstrass Karl Weierstrass] discovers but does not publish the [http://en.wikipedia.org/wiki/Laurent_expansion_theorem Laurent expansion theorem],
 
* [http://en.wikipedia.org/wiki/1841 1841] - [http://en.wikipedia.org/wiki/Karl_Weierstrass Karl Weierstrass] discovers but does not publish the [http://en.wikipedia.org/wiki/Laurent_expansion_theorem Laurent expansion theorem],
116번째 줄: 116번째 줄:
 
* [http://en.wikipedia.org/wiki/1850 1850] - 스토크스가 [[스토크스 정리]] 를 재발견하고 증명함
 
* [http://en.wikipedia.org/wiki/1850 1850] - 스토크스가 [[스토크스 정리]] 를 재발견하고 증명함
 
* 1854 - 리만이 리만기하학을 소개
 
* 1854 - 리만이 리만기하학을 소개
* [http://en.wikipedia.org/wiki/1854 1854] - [http://en.wikipedia.org/wiki/Arthur_Cayley Arthur Cayley] shows that [http://en.wikipedia.org/wiki/Quaternion quaternions] can be used to represent rotations in four-dimensional [http://en.wikipedia.org/wiki/Space space],
+
* [http://en.wikipedia.org/wiki/1854 1854] - 케일리가 [[해밀턴의 사원수(quarternions)|사원수]]가 4차원 공간의 회전을 나타낼 수 있음을 보임
* 1858 - 뫼비우스가 [[#|뫼비우스의 띠]]를 발견
+
* 1858 - 뫼비우스가 [[뫼비우스의 띠]]를 발견
* 1858 - 에르미트와 크로네커가 [[타원함수]]를 이용하여 오차방정식의 해를 구함 ([[#|오차방정식과 정이십면체]])
+
* 1858 - 에르미트와 크로네커가 [[타원함수]]를 이용하여 오차방정식의 해를 구함 ([오차방정식과 정이십면체]])
 
* [http://en.wikipedia.org/wiki/1859 1859] - 리만이 [[리만가설]]을 발표
 
* [http://en.wikipedia.org/wiki/1859 1859] - 리만이 [[리만가설]]을 발표
 
* [http://en.wikipedia.org/wiki/1870 1870] - [http://en.wikipedia.org/wiki/Felix_Klein Felix Klein] constructs an analytic geometry for Lobachevski's geometry thereby establishing its self-consistency and the logical independence of Euclid's fifth postulate,
 
* [http://en.wikipedia.org/wiki/1870 1870] - [http://en.wikipedia.org/wiki/Felix_Klein Felix Klein] constructs an analytic geometry for Lobachevski's geometry thereby establishing its self-consistency and the logical independence of Euclid's fifth postulate,
* [http://en.wikipedia.org/wiki/1873 1873] - 에르미트가 [[#|자연상수 e는 초월수]] 임을 증명
+
* [http://en.wikipedia.org/wiki/1873 1873] - 에르미트가 자연상수 e는 초월수임을 증명
 
* [http://en.wikipedia.org/wiki/1873 1873] - 프로베니우스([http://en.wikipedia.org/wiki/Georg_Frobenius Georg Frobenius])가 [[정규특이점(regular singular points)]]을 가지는 선형미분방정식의 급수해 찾는 방법을 소개함
 
* [http://en.wikipedia.org/wiki/1873 1873] - 프로베니우스([http://en.wikipedia.org/wiki/Georg_Frobenius Georg Frobenius])가 [[정규특이점(regular singular points)]]을 가지는 선형미분방정식의 급수해 찾는 방법을 소개함
 
* [http://en.wikipedia.org/wiki/1874 1874] - [http://en.wikipedia.org/wiki/Georg_Cantor Georg Cantor] shows that the set of all [http://en.wikipedia.org/wiki/Real_number real numbers] is [http://en.wikipedia.org/wiki/Uncountable uncountably infinite] but the set of all [http://en.wikipedia.org/wiki/Algebraic_number algebraic numbers] is [http://en.wikipedia.org/wiki/Countable countably infinite]. Contrary to widely held beliefs, his method was not his famous [http://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument diagonal argument], which he published three years later. (Nor did he formulate [http://en.wikipedia.org/wiki/Set_theory set theory] at this time.)
 
* [http://en.wikipedia.org/wiki/1874 1874] - [http://en.wikipedia.org/wiki/Georg_Cantor Georg Cantor] shows that the set of all [http://en.wikipedia.org/wiki/Real_number real numbers] is [http://en.wikipedia.org/wiki/Uncountable uncountably infinite] but the set of all [http://en.wikipedia.org/wiki/Algebraic_number algebraic numbers] is [http://en.wikipedia.org/wiki/Countable countably infinite]. Contrary to widely held beliefs, his method was not his famous [http://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument diagonal argument], which he published three years later. (Nor did he formulate [http://en.wikipedia.org/wiki/Set_theory set theory] at this time.)

2013년 4월 7일 (일) 04:12 판

개요

 

15세기

 

 

 

16세기

  • 1545년 카르다노가 'Ars Magna' 를 출판

 

 

17세기

 

18세기


 

19세기


 

20세기

 

 

중요 수학 저술

 

 

기구의 설립

관련링크와 웹페이지

 

관련도서

 

사전형태의 자료