"수학사 연표"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) (→20세기) |
Pythagoras0 (토론 | 기여) |
||
(같은 사용자의 중간 판 18개는 보이지 않습니다) | |||
3번째 줄: | 3번째 줄: | ||
* http://blog.daum.net/kangnaru333/15859461 | * http://blog.daum.net/kangnaru333/15859461 | ||
− | + | ||
==15세기== | ==15세기== | ||
− | + | ||
− | + | ||
− | + | ||
==16세기== | ==16세기== | ||
17번째 줄: | 17번째 줄: | ||
* 1545년 카르다노가 'Ars Magna' 를 출판 | * 1545년 카르다노가 'Ars Magna' 를 출판 | ||
− | + | ||
− | + | ||
== 17세기 == | == 17세기 == | ||
26번째 줄: | 26번째 줄: | ||
* [http://en.wikipedia.org/wiki/1614 1614] -존 네이피어가 <em style="">Mirifici Logarithmorum Canonis Descriptio</em>에서 네이피어 로그의 개념을 논함 | * [http://en.wikipedia.org/wiki/1614 1614] -존 네이피어가 <em style="">Mirifici Logarithmorum Canonis Descriptio</em>에서 네이피어 로그의 개념을 논함 | ||
* [http://en.wikipedia.org/wiki/1617 1617] - [http://en.wikipedia.org/wiki/Henry_Briggs_%28mathematician%29 Henry Briggs] discusses decimal logarithms in <em style="">Logarithmorum Chilias Prima</em>, | * [http://en.wikipedia.org/wiki/1617 1617] - [http://en.wikipedia.org/wiki/Henry_Briggs_%28mathematician%29 Henry Briggs] discusses decimal logarithms in <em style="">Logarithmorum Chilias Prima</em>, | ||
− | * [http://en.wikipedia.org/wiki/1618 1618] - 네이피어가 로그와 관련한 작업을 | + | * [http://en.wikipedia.org/wiki/1618 1618] - 네이피어가 로그와 관련한 작업을 통하여 [[자연상수 e|자연상수]]에 대한 첫번째 출판을 함 |
* 1619 - 페르마가 해석기하학을 독립적으로 발견했음을 주장함 | * 1619 - 페르마가 해석기하학을 독립적으로 발견했음을 주장함 | ||
* [http://en.wikipedia.org/wiki/1619 1619] - 케플러가 두 개의 케플러-Poinsot 다면체를 발견 | * [http://en.wikipedia.org/wiki/1619 1619] - 케플러가 두 개의 케플러-Poinsot 다면체를 발견 | ||
− | * [http://en.wikipedia.org/wiki/1629 1629] - 페르마가 | + | * [http://en.wikipedia.org/wiki/1629 1629] - 페르마가 기초적인 미분학을 발전시킴 |
* 1634 - [http://en.wikipedia.org/wiki/Gilles_de_Roberval Gilles de Roberval] [[사이클로이드]] 아래의 면적이 기본원의 세 배임을 증명 | * 1634 - [http://en.wikipedia.org/wiki/Gilles_de_Roberval Gilles de Roberval] [[사이클로이드]] 아래의 면적이 기본원의 세 배임을 증명 | ||
* [http://en.wikipedia.org/wiki/1636 1636] - [http://en.wikipedia.org/wiki/Muhammad_Baqir_Yazdi Muhammad Baqir Yazdi] jointly discovered the pair of [http://en.wikipedia.org/wiki/Amicable_number amicable numbers] 9,363,584 and 9,437,056 along with [http://en.wikipedia.org/wiki/Descartes Descartes] (1636) | * [http://en.wikipedia.org/wiki/1636 1636] - [http://en.wikipedia.org/wiki/Muhammad_Baqir_Yazdi Muhammad Baqir Yazdi] jointly discovered the pair of [http://en.wikipedia.org/wiki/Amicable_number amicable numbers] 9,363,584 and 9,437,056 along with [http://en.wikipedia.org/wiki/Descartes Descartes] (1636) | ||
− | * 1637 - 데카르트가 '방법서설'을 출판, 페르마가 디오판투스의 '산술' 책의 | + | * 1637 - 데카르트가 '방법서설'을 출판, 페르마가 디오판투스의 '산술' 책의 여백에 [[페르마의 마지막 정리]] 를 증명했다고 서술함 |
* [http://en.wikipedia.org/wiki/1637 1637] - 데카르트가 최초로 '허수'라는 용어를 조롱의 의미에서 사용함 | * [http://en.wikipedia.org/wiki/1637 1637] - 데카르트가 최초로 '허수'라는 용어를 조롱의 의미에서 사용함 | ||
* [http://en.wikipedia.org/wiki/1654 1654] - 파스칼과 페르마가 확률론을 창시 | * [http://en.wikipedia.org/wiki/1654 1654] - 파스칼과 페르마가 확률론을 창시 | ||
38번째 줄: | 38번째 줄: | ||
* 1658 - [http://en.wikipedia.org/wiki/Christopher_Wren 크리스토퍼 렌]이 [[사이클로이드]]의 길이가 기본원의 네 배임을 증명 | * 1658 - [http://en.wikipedia.org/wiki/Christopher_Wren 크리스토퍼 렌]이 [[사이클로이드]]의 길이가 기본원의 네 배임을 증명 | ||
* 1660년 영국의 왕립 학회 설립 (Royal Society) | * 1660년 영국의 왕립 학회 설립 (Royal Society) | ||
− | * [http://en.wikipedia.org/wiki/1665 1665] - | + | * [http://en.wikipedia.org/wiki/1665 1665] - 뉴턴이 [[미적분학의 기본정리]]를 연구하고 미적분학을 발전시킴 |
* 1666년 프랑스의 과학 아카데미(Académie des Sciences) 설립 | * 1666년 프랑스의 과학 아카데미(Académie des Sciences) 설립 | ||
* [http://en.wikipedia.org/wiki/1668 1668] - [http://en.wikipedia.org/wiki/Nicholas_Mercator Nicholas Mercator] and [http://en.wikipedia.org/wiki/William_Brouncker William Brouncker] discover an [http://en.wikipedia.org/wiki/Infinite_series infinite series] for the logarithm while attempting to calculate the area under a [http://en.wikipedia.org/w/index.php?title=Hyperbolic_segment&action=edit&redlink=1 hyperbolic segment], | * [http://en.wikipedia.org/wiki/1668 1668] - [http://en.wikipedia.org/wiki/Nicholas_Mercator Nicholas Mercator] and [http://en.wikipedia.org/wiki/William_Brouncker William Brouncker] discover an [http://en.wikipedia.org/wiki/Infinite_series infinite series] for the logarithm while attempting to calculate the area under a [http://en.wikipedia.org/w/index.php?title=Hyperbolic_segment&action=edit&redlink=1 hyperbolic segment], | ||
− | * [http://en.wikipedia.org/wiki/1671 1671] - 제임스 그레고리가 아크탄젠트함수의 급수표현을 발견([[그레고리-라이프니츠 급수]]) | + | * [http://en.wikipedia.org/wiki/1671 1671] - 제임스 그레고리가 아크탄젠트함수의 급수표현을 발견([[그레고리-라이프니츠 급수]]) (originally discovered by [http://en.wikipedia.org/wiki/Madhava_of_Sangamagrama Madhava]) |
* [http://en.wikipedia.org/wiki/1673 1673] - [http://en.wikipedia.org/wiki/Gottfried_Leibniz Gottfried Leibniz] also develops his version of [http://en.wikipedia.org/wiki/Infinitesimal_calculus infinitesimal calculus], | * [http://en.wikipedia.org/wiki/1673 1673] - [http://en.wikipedia.org/wiki/Gottfried_Leibniz Gottfried Leibniz] also develops his version of [http://en.wikipedia.org/wiki/Infinitesimal_calculus infinitesimal calculus], | ||
* [http://en.wikipedia.org/wiki/1675 1675] - Isaac Newton invents an algorithm for the [http://en.wikipedia.org/wiki/Newton%27s_method computation of functional roots], | * [http://en.wikipedia.org/wiki/1675 1675] - Isaac Newton invents an algorithm for the [http://en.wikipedia.org/wiki/Newton%27s_method computation of functional roots], | ||
49번째 줄: | 49번째 줄: | ||
* [http://en.wikipedia.org/wiki/1696 1696] - [http://en.wikipedia.org/wiki/Guillaume_Fran%C3%A7ois_Antoine,_Marquis_de_l%27H%C3%B4pital Guillaume de L'Hôpital] states [http://en.wikipedia.org/wiki/L%27H%C3%B4pital%27s_rule his rule] for the computation of certain [http://en.wikipedia.org/wiki/Limit_%28mathematics%29 limits], | * [http://en.wikipedia.org/wiki/1696 1696] - [http://en.wikipedia.org/wiki/Guillaume_Fran%C3%A7ois_Antoine,_Marquis_de_l%27H%C3%B4pital Guillaume de L'Hôpital] states [http://en.wikipedia.org/wiki/L%27H%C3%B4pital%27s_rule his rule] for the computation of certain [http://en.wikipedia.org/wiki/Limit_%28mathematics%29 limits], | ||
* 1696 - 자콥 베르누이와 요한 베르누이가 [[최단시간강하곡선 문제(Brachistochrone problem)]]를 해결함. [[변분법]]의 첫번째 결과. | * 1696 - 자콥 베르누이와 요한 베르누이가 [[최단시간강하곡선 문제(Brachistochrone problem)]]를 해결함. [[변분법]]의 첫번째 결과. | ||
− | + | ||
== 18세기 == | == 18세기 == | ||
− | + | * [http://en.wikipedia.org/wiki/1706 1706] - 마친, [[#|마친(Machin)의 공식]]을 활용하여 파이값 100자리까지 계산 | |
− | * [http://en.wikipedia.org/wiki/1706 1706] - 마친, | + | * 1707 오일러 출생 |
* [http://en.wikipedia.org/wiki/1712 1712] - 브룩 테일러의 테일러 급수 | * [http://en.wikipedia.org/wiki/1712 1712] - 브룩 테일러의 테일러 급수 | ||
− | * [http://en.wikipedia.org/wiki/1722 1722] - [[#|드 무아브르의 정리, 복소수와 정다각형]] | + | * [http://en.wikipedia.org/wiki/1722 1722] - [[#|드 무아브르의 정리, 복소수와 정다각형]] 발견 |
* [http://en.wikipedia.org/wiki/1724 1724] - Abraham De Moivre studies mortality statistics and the foundation of the theory of annuities in <em style="">Annuities on Lives</em>, | * [http://en.wikipedia.org/wiki/1724 1724] - Abraham De Moivre studies mortality statistics and the foundation of the theory of annuities in <em style="">Annuities on Lives</em>, | ||
* [http://en.wikipedia.org/wiki/1730 1730] - [http://en.wikipedia.org/wiki/James_Stirling_%28mathematician%29 제임스 스털링]이 <em style="">The Differential Method</em>를 출판함 | * [http://en.wikipedia.org/wiki/1730 1730] - [http://en.wikipedia.org/wiki/James_Stirling_%28mathematician%29 제임스 스털링]이 <em style="">The Differential Method</em>를 출판함 | ||
* [http://en.wikipedia.org/wiki/1733 1733] - [http://en.wikipedia.org/wiki/Giovanni_Gerolamo_Saccheri Giovanni Gerolamo Saccheri] studies what geometry would be like if [http://en.wikipedia.org/wiki/Parallel_postulate Euclid's fifth postulate] were false, | * [http://en.wikipedia.org/wiki/1733 1733] - [http://en.wikipedia.org/wiki/Giovanni_Gerolamo_Saccheri Giovanni Gerolamo Saccheri] studies what geometry would be like if [http://en.wikipedia.org/wiki/Parallel_postulate Euclid's fifth postulate] were false, | ||
− | * | + | * 1733 - 드무아브르가 정규분포의 확률밀도함수를 통해 이항분포의 근사식을 얻음. [[드무아브르-라플라스 중심극한정리]] 참조. |
* [http://en.wikipedia.org/wiki/1734 1734] - 오일러가 [[일계 선형미분방정식]]의 적분인자를 통한 해법을 구함 | * [http://en.wikipedia.org/wiki/1734 1734] - 오일러가 [[일계 선형미분방정식]]의 적분인자를 통한 해법을 구함 | ||
− | * [http://en.wikipedia.org/wiki/1735 1735] - [[오일러(1707-1783)|오일러]] | + | * [http://en.wikipedia.org/wiki/1735 1735] - [[오일러(1707-1783)|오일러]]가 바젤 문제를 해결함 [[#|오일러와 바젤문제(완전제곱수의 역수들의 합)]] |
− | * [http://en.wikipedia.org/wiki/1736 | + | * [http://en.wikipedia.org/wiki/1736 1735] - 오일러가 [[쾨니히스부르크의 다리 문제]]를 해결하고 [http://en.wikipedia.org/wiki/Graph_theory 그래프 이론]을 창시함 |
− | * [http://en.wikipedia.org/wiki/1739 1739] - [[오일러(1707-1783)|오일러]] | + | * [http://en.wikipedia.org/wiki/1739 1739] - [[오일러(1707-1783)|오일러]]가 [[상수계수 이계 선형미분방정식|상수계수 선형미분방정식]]의 일반해를 구함 |
* 1742 - 오일러가 sin x/x 의 무한곱 표현을 얻음 [[삼각함수의 무한곱 표현|삼각함수와 무한곱 표현]] | * 1742 - 오일러가 sin x/x 의 무한곱 표현을 얻음 [[삼각함수의 무한곱 표현|삼각함수와 무한곱 표현]] | ||
− | * [http://en.wikipedia.org/wiki/1742 1742] - | + | * [http://en.wikipedia.org/wiki/1742 1742] - [[골드바흐 추측]] |
* [http://en.wikipedia.org/wiki/1748 1748] - [http://en.wikipedia.org/wiki/Maria_Gaetana_Agnesi Maria Gaetana Agnesi] discusses analysis in <em style="">Instituzioni Analitiche ad Uso della Gioventu Italiana</em>, | * [http://en.wikipedia.org/wiki/1748 1748] - [http://en.wikipedia.org/wiki/Maria_Gaetana_Agnesi Maria Gaetana Agnesi] discusses analysis in <em style="">Instituzioni Analitiche ad Uso della Gioventu Italiana</em>, | ||
* [http://en.wikipedia.org/wiki/1761 1761] - [http://en.wikipedia.org/wiki/Thomas_Bayes Thomas Bayes] proves [http://en.wikipedia.org/wiki/Bayes%27_theorem Bayes' theorem], | * [http://en.wikipedia.org/wiki/1761 1761] - [http://en.wikipedia.org/wiki/Thomas_Bayes Thomas Bayes] proves [http://en.wikipedia.org/wiki/Bayes%27_theorem Bayes' theorem], | ||
− | * 1761 - | + | * 1761 - 람베르트가 [[파이 π는 무리수이다|파이 π는 무리수]] 임을 증명 |
− | * [http://en.wikipedia.org/wiki/1762 1762] - [ | + | * [http://en.wikipedia.org/wiki/1762 1762] - 라그랑지가 [[발산 정리(divergence theorem)]]를 발견 |
+ | * 1783 오일러 사망 | ||
* [http://en.wikipedia.org/wiki/1789 1789] - [http://en.wikipedia.org/wiki/Jurij_Vega Jurij Vega] improves Machin's formula and computes π to 140 decimal places, | * [http://en.wikipedia.org/wiki/1789 1789] - [http://en.wikipedia.org/wiki/Jurij_Vega Jurij Vega] improves Machin's formula and computes π to 140 decimal places, | ||
* [http://en.wikipedia.org/wiki/1794 1794] - Jurij Vega publishes <em style="">Thesaurus Logarithmorum Completus</em>, | * [http://en.wikipedia.org/wiki/1794 1794] - Jurij Vega publishes <em style="">Thesaurus Logarithmorum Completus</em>, | ||
− | * [http://en.wikipedia.org/wiki/1796 1796] - | + | * [http://en.wikipedia.org/wiki/1796 1796] - 가우스가 [[가우스와 정17각형의 작도|정17각형의 작도]] 문제를 해결함. |
− | |||
* [http://en.wikipedia.org/wiki/1797 1797] - [http://en.wikipedia.org/wiki/Caspar_Wessel Caspar Wessel] associates vectors with [http://en.wikipedia.org/wiki/Complex_number complex numbers] and studies complex number operations in geometrical terms, | * [http://en.wikipedia.org/wiki/1797 1797] - [http://en.wikipedia.org/wiki/Caspar_Wessel Caspar Wessel] associates vectors with [http://en.wikipedia.org/wiki/Complex_number complex numbers] and studies complex number operations in geometrical terms, | ||
− | * [http://en.wikipedia.org/wiki/1799 1799] - | + | * 1798 르장드르가 [[소수 정리]]를 추측 |
+ | * [http://en.wikipedia.org/wiki/1799 1799] - 가우스가 [[대수학의 기본정리]]를 증명함 | ||
* [http://en.wikipedia.org/wiki/1799 1799] - [http://en.wikipedia.org/wiki/Paolo_Ruffini Paolo Ruffini] partially proves the [http://en.wikipedia.org/wiki/Abel%E2%80%93Ruffini_theorem Abel–Ruffini theorem] that [http://en.wikipedia.org/wiki/Quintic_equation quintic] or higher equations cannot be solved by a general formula, | * [http://en.wikipedia.org/wiki/1799 1799] - [http://en.wikipedia.org/wiki/Paolo_Ruffini Paolo Ruffini] partially proves the [http://en.wikipedia.org/wiki/Abel%E2%80%93Ruffini_theorem Abel–Ruffini theorem] that [http://en.wikipedia.org/wiki/Quintic_equation quintic] or higher equations cannot be solved by a general formula, | ||
− | + | ||
== 19세기 == | == 19세기 == | ||
− | * [http://en.wikipedia.org/wiki/1801 1801] - | + | * [http://en.wikipedia.org/wiki/1801 1801] - 가우스가 <em style="">[http://en.wikipedia.org/wiki/Disquisitiones_Arithmeticae Disquisitiones Arithmeticae]</em>를 출판함. |
* [http://en.wikipedia.org/wiki/1805 1805] - 르장드르가 최소자승의 법칙을 도입함. | * [http://en.wikipedia.org/wiki/1805 1805] - 르장드르가 최소자승의 법칙을 도입함. | ||
* [http://en.wikipedia.org/wiki/1806 1806] - [http://en.wikipedia.org/wiki/Louis_Poinsot Louis Poinsot] 이 나머지 두 개의 케플러-Poinsot 다면체를 발견(1619년을 볼 것) | * [http://en.wikipedia.org/wiki/1806 1806] - [http://en.wikipedia.org/wiki/Louis_Poinsot Louis Poinsot] 이 나머지 두 개의 케플러-Poinsot 다면체를 발견(1619년을 볼 것) | ||
− | * [http://en.wikipedia.org/wiki/1806 1806] - [http://en.wikipedia.org/wiki/Jean-Robert_Argand Jean-Robert Argand] | + | * [http://en.wikipedia.org/wiki/1806 1806] - [http://en.wikipedia.org/wiki/Jean-Robert_Argand Jean-Robert Argand] 가 [[대수학의 기본정리]]를 증명하고 [http://en.wikipedia.org/wiki/Argand_diagram Argand diagram] 을 발표함 |
* 1807 - 푸리에가 함수의 삼각함수로의 분해를 발표, On the Propagation of Heat in Solid Bodies [[푸리에 급수]], [[열방정식]] | * 1807 - 푸리에가 함수의 삼각함수로의 분해를 발표, On the Propagation of Heat in Solid Bodies [[푸리에 급수]], [[열방정식]] | ||
* [http://en.wikipedia.org/wiki/1811 1811] - Carl Friedrich Gauss discusses the meaning of integrals with complex limits and briefly examines the dependence of such integrals on the chosen path of integration, | * [http://en.wikipedia.org/wiki/1811 1811] - Carl Friedrich Gauss discusses the meaning of integrals with complex limits and briefly examines the dependence of such integrals on the chosen path of integration, | ||
93번째 줄: | 94번째 줄: | ||
* [http://en.wikipedia.org/wiki/1817 1817] - [http://en.wikipedia.org/wiki/Bernard_Bolzano Bernard Bolzano] presents the [http://en.wikipedia.org/wiki/Intermediate_value_theorem intermediate value theorem]---a [http://en.wikipedia.org/wiki/Continuous_function continuous function] which is negative at one point and positive at another point must be zero for at least one point in between, | * [http://en.wikipedia.org/wiki/1817 1817] - [http://en.wikipedia.org/wiki/Bernard_Bolzano Bernard Bolzano] presents the [http://en.wikipedia.org/wiki/Intermediate_value_theorem intermediate value theorem]---a [http://en.wikipedia.org/wiki/Continuous_function continuous function] which is negative at one point and positive at another point must be zero for at least one point in between, | ||
* 1822 -코쉬가 [[복소함수론]]에서 사각형의 둘레를 따라 적분한데 대한 코쉬정리를 발표함 | * 1822 -코쉬가 [[복소함수론]]에서 사각형의 둘레를 따라 적분한데 대한 코쉬정리를 발표함 | ||
+ | * 1822 - 푸리에가 '열의 해석적 이론 ''Théorie Analytique de la Chaleur'''을 출판 | ||
* [http://en.wikipedia.org/wiki/1824 1824] - 아벨이 일반적인 5차 이상의 방정식의 근의 공식이 없음을 증명함. [[5차방정식의 근의 공식과 아벨의 증명]] 참조 | * [http://en.wikipedia.org/wiki/1824 1824] - 아벨이 일반적인 5차 이상의 방정식의 근의 공식이 없음을 증명함. [[5차방정식의 근의 공식과 아벨의 증명]] 참조 | ||
* [http://en.wikipedia.org/wiki/1825 1825] - 코쉬가 일반적인 적분경로에 대한 코쉬 적분 정리를 발표함 he assumes the function being integrated has a continuous derivative, and he introduces the theory of [http://en.wikipedia.org/wiki/Residue_%28complex_analysis%29 residues] in [http://en.wikipedia.org/wiki/Complex_analysis complex analysis], | * [http://en.wikipedia.org/wiki/1825 1825] - 코쉬가 일반적인 적분경로에 대한 코쉬 적분 정리를 발표함 he assumes the function being integrated has a continuous derivative, and he introduces the theory of [http://en.wikipedia.org/wiki/Residue_%28complex_analysis%29 residues] in [http://en.wikipedia.org/wiki/Complex_analysis complex analysis], | ||
− | * [http://en.wikipedia.org/wiki/1825 1825] - | + | * [http://en.wikipedia.org/wiki/1825 1825] - 디리클레와 르장드르가 <em style="">n</em> = 5인 경우에 대해 [[페르마의 마지막 정리]]를 증명 |
* [http://en.wikipedia.org/wiki/1825 1825] - [http://en.wikipedia.org/wiki/Andre_Marie_Ampere André-Marie Ampère] 가 스토크스 정리를 발견 | * [http://en.wikipedia.org/wiki/1825 1825] - [http://en.wikipedia.org/wiki/Andre_Marie_Ampere André-Marie Ampère] 가 스토크스 정리를 발견 | ||
* [http://en.wikipedia.org/wiki/1828 1828] - 조지 그린(George Green)이 [[그린 정리]] 를 증명함 | * [http://en.wikipedia.org/wiki/1828 1828] - 조지 그린(George Green)이 [[그린 정리]] 를 증명함 | ||
− | * 1829 - 볼리아이, 가우스, | + | * 1829 - 볼리아이, 가우스, 로바체프스키가 [[쌍곡기하학]]을 발견 |
* [http://en.wikipedia.org/wiki/1831 1831] - [http://en.wikipedia.org/wiki/Mikhail_Vasilievich_Ostrogradsky Mikhail Vasilievich Ostrogradsky] rediscovers and gives the first proof of the divergence theorem earlier described by Lagrange, Gauss and Green, | * [http://en.wikipedia.org/wiki/1831 1831] - [http://en.wikipedia.org/wiki/Mikhail_Vasilievich_Ostrogradsky Mikhail Vasilievich Ostrogradsky] rediscovers and gives the first proof of the divergence theorem earlier described by Lagrange, Gauss and Green, | ||
* [http://en.wikipedia.org/wiki/1832 1832] - [http://en.wikipedia.org/wiki/%C3%89variste_Galois Évariste Galois] presents a general condition for the solvability of [http://en.wikipedia.org/wiki/Algebraic_equation algebraic equations], thereby essentially founding [http://en.wikipedia.org/wiki/Group_theory group theory] and [http://en.wikipedia.org/wiki/Galois_theory Galois theory], | * [http://en.wikipedia.org/wiki/1832 1832] - [http://en.wikipedia.org/wiki/%C3%89variste_Galois Évariste Galois] presents a general condition for the solvability of [http://en.wikipedia.org/wiki/Algebraic_equation algebraic equations], thereby essentially founding [http://en.wikipedia.org/wiki/Group_theory group theory] and [http://en.wikipedia.org/wiki/Galois_theory Galois theory], | ||
− | * 1832 - | + | * 1832 - 디리클레가 <em style="">n</em> = 14인 경우의 [[페르마의 마지막 정리]]를 증명 |
− | * 1837 - | + | * 1837 - 디리클레가 [[등차수열의 소수분포에 관한 디리클레 정리]]를 증명 |
− | * 1837 - 피에르 완첼([http://en.wikipedia.org/w/index.php?title=Pierre_Wantsel&action=edit&redlink=1 Pierre Wantsel])이 [[#|두배의 부피를 갖는 정육면체(The duplication of the cube)]] | + | * 1837 - 피에르 완첼([http://en.wikipedia.org/w/index.php?title=Pierre_Wantsel&action=edit&redlink=1 Pierre Wantsel])이 [[#|두배의 부피를 갖는 정육면체(The duplication of the cube)]]과 [[#|각의 3등분(The trisection of an angle)]] 문제가 자와 컴파스로 해결불가능임을 증명, as well as the full completion of the problem of constructability of regular polygons |
− | * 1839 - 디리클레가 [[ | + | * 1839 - 디리클레가 [[디리클레 유수 (class number) 공식]] 을 증명함 |
** http://en.wikipedia.org/wiki/Johann_Peter_Gustav_Lejeune_Dirichlet 참조 | ** http://en.wikipedia.org/wiki/Johann_Peter_Gustav_Lejeune_Dirichlet 참조 | ||
* [http://en.wikipedia.org/wiki/1841 1841] - [http://en.wikipedia.org/wiki/Karl_Weierstrass Karl Weierstrass] discovers but does not publish the [http://en.wikipedia.org/wiki/Laurent_expansion_theorem Laurent expansion theorem], | * [http://en.wikipedia.org/wiki/1841 1841] - [http://en.wikipedia.org/wiki/Karl_Weierstrass Karl Weierstrass] discovers but does not publish the [http://en.wikipedia.org/wiki/Laurent_expansion_theorem Laurent expansion theorem], | ||
* [http://en.wikipedia.org/wiki/1843 1843] - [http://en.wikipedia.org/w/index.php?title=Pierre-Alphonse_Laurent&action=edit&redlink=1 Pierre-Alphonse Laurent] discovers and presents the Laurent expansion theorem, | * [http://en.wikipedia.org/wiki/1843 1843] - [http://en.wikipedia.org/w/index.php?title=Pierre-Alphonse_Laurent&action=edit&redlink=1 Pierre-Alphonse Laurent] discovers and presents the Laurent expansion theorem, | ||
− | * [http://en.wikipedia.org/wiki/1843 1843] - 해밀턴이 [[해밀턴의 사원수(quarternions)|사원수]] | + | * [http://en.wikipedia.org/wiki/1843 1843] - 해밀턴이 [[해밀턴의 사원수(quarternions)|사원수]] 를 발견함 |
* 1844 - 리우빌이 초월수인 리우빌 수를 구성함 | * 1844 - 리우빌이 초월수인 리우빌 수를 구성함 | ||
* [http://en.wikipedia.org/wiki/1847 1847] - [http://en.wikipedia.org/wiki/George_Boole George Boole] formalizes [http://en.wikipedia.org/wiki/Symbolic_logic symbolic logic] in <em style="">The Mathematical Analysis of Logic</em>, defining what is now called [http://en.wikipedia.org/wiki/Boolean_algebra_%28logic%29 Boolean algebra], | * [http://en.wikipedia.org/wiki/1847 1847] - [http://en.wikipedia.org/wiki/George_Boole George Boole] formalizes [http://en.wikipedia.org/wiki/Symbolic_logic symbolic logic] in <em style="">The Mathematical Analysis of Logic</em>, defining what is now called [http://en.wikipedia.org/wiki/Boolean_algebra_%28logic%29 Boolean algebra], | ||
115번째 줄: | 117번째 줄: | ||
* [http://en.wikipedia.org/wiki/1850 1850] - 스토크스가 [[스토크스 정리]] 를 재발견하고 증명함 | * [http://en.wikipedia.org/wiki/1850 1850] - 스토크스가 [[스토크스 정리]] 를 재발견하고 증명함 | ||
* 1854 - 리만이 리만기하학을 소개 | * 1854 - 리만이 리만기하학을 소개 | ||
− | * [http://en.wikipedia.org/wiki/1854 1854] - [ | + | * [http://en.wikipedia.org/wiki/1854 1854] - 케일리가 [[해밀턴의 사원수(quarternions)|사원수]]가 4차원 공간의 회전을 나타낼 수 있음을 보임 |
− | * 1858 - 뫼비우스가 [[ | + | * 1858 - 뫼비우스가 [[뫼비우스의 띠]]를 발견 |
− | * 1858 - 에르미트와 크로네커가 [[타원함수]]를 이용하여 오차방정식의 해를 구함 ([ | + | * 1858 - 에르미트와 크로네커가 [[타원함수]]를 이용하여 오차방정식의 해를 구함 ([오차방정식과 정이십면체]]) |
− | * [http://en.wikipedia.org/wiki/1859 1859] - | + | * [http://en.wikipedia.org/wiki/1859 1859] - 리만이 [[리만가설]]을 발표 |
* [http://en.wikipedia.org/wiki/1870 1870] - [http://en.wikipedia.org/wiki/Felix_Klein Felix Klein] constructs an analytic geometry for Lobachevski's geometry thereby establishing its self-consistency and the logical independence of Euclid's fifth postulate, | * [http://en.wikipedia.org/wiki/1870 1870] - [http://en.wikipedia.org/wiki/Felix_Klein Felix Klein] constructs an analytic geometry for Lobachevski's geometry thereby establishing its self-consistency and the logical independence of Euclid's fifth postulate, | ||
− | * [http://en.wikipedia.org/wiki/1873 1873] - | + | * [http://en.wikipedia.org/wiki/1873 1873] - 에르미트가 자연상수 e는 초월수임을 증명 |
− | * [http://en.wikipedia.org/wiki/1873 1873] - 프로베니우스([http://en.wikipedia.org/wiki/Georg_Frobenius Georg Frobenius]) | + | * [http://en.wikipedia.org/wiki/1873 1873] - 프로베니우스([http://en.wikipedia.org/wiki/Georg_Frobenius Georg Frobenius])가 [[정규특이점(regular singular points)]]을 가지는 선형미분방정식의 급수해 찾는 방법을 소개함 |
* [http://en.wikipedia.org/wiki/1874 1874] - [http://en.wikipedia.org/wiki/Georg_Cantor Georg Cantor] shows that the set of all [http://en.wikipedia.org/wiki/Real_number real numbers] is [http://en.wikipedia.org/wiki/Uncountable uncountably infinite] but the set of all [http://en.wikipedia.org/wiki/Algebraic_number algebraic numbers] is [http://en.wikipedia.org/wiki/Countable countably infinite]. Contrary to widely held beliefs, his method was not his famous [http://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument diagonal argument], which he published three years later. (Nor did he formulate [http://en.wikipedia.org/wiki/Set_theory set theory] at this time.) | * [http://en.wikipedia.org/wiki/1874 1874] - [http://en.wikipedia.org/wiki/Georg_Cantor Georg Cantor] shows that the set of all [http://en.wikipedia.org/wiki/Real_number real numbers] is [http://en.wikipedia.org/wiki/Uncountable uncountably infinite] but the set of all [http://en.wikipedia.org/wiki/Algebraic_number algebraic numbers] is [http://en.wikipedia.org/wiki/Countable countably infinite]. Contrary to widely held beliefs, his method was not his famous [http://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument diagonal argument], which he published three years later. (Nor did he formulate [http://en.wikipedia.org/wiki/Set_theory set theory] at this time.) | ||
* 1877 - 클라인이 '[[5차방정식과 정이십면체|정이십면체와 오차방정식]] 강의' 를 출판함 | * 1877 - 클라인이 '[[5차방정식과 정이십면체|정이십면체와 오차방정식]] 강의' 를 출판함 | ||
− | * 1882 - | + | * 1882 - 린데만이 [[파이 π는 초월수이다|파이는 초월수]]임을 증명하고 따라서 [[원과 같은 넓이를 갖는 정사각형의 작도(원적문제 The quadrature of a circle)|원과 같은 넓이를 갖는 정사각형의 작도]]가 불가능함을 증명 |
* 1882 - 펠릭스 클라인이 [[#|클라인씨의 병]]을 발견 | * 1882 - 펠릭스 클라인이 [[#|클라인씨의 병]]을 발견 | ||
* [http://en.wikipedia.org/wiki/1895 1895] - [http://en.wikipedia.org/wiki/Diederik_Korteweg Diederik Korteweg] and [http://en.wikipedia.org/wiki/Gustav_de_Vries Gustav de Vries] derive the [http://en.wikipedia.org/wiki/KdV_equation KdV equation] to describe the development of long solitary water waves in a canal of rectangular cross section, | * [http://en.wikipedia.org/wiki/1895 1895] - [http://en.wikipedia.org/wiki/Diederik_Korteweg Diederik Korteweg] and [http://en.wikipedia.org/wiki/Gustav_de_Vries Gustav de Vries] derive the [http://en.wikipedia.org/wiki/KdV_equation KdV equation] to describe the development of long solitary water waves in a canal of rectangular cross section, | ||
* [http://en.wikipedia.org/wiki/1895 1895] - [http://en.wikipedia.org/wiki/Georg_Cantor Georg Cantor] publishes a book about set theory containing the arithmetic of infinite [http://en.wikipedia.org/wiki/Cardinal_number cardinal numbers] and the [http://en.wikipedia.org/wiki/Continuum_hypothesis continuum hypothesis], | * [http://en.wikipedia.org/wiki/1895 1895] - [http://en.wikipedia.org/wiki/Georg_Cantor Georg Cantor] publishes a book about set theory containing the arithmetic of infinite [http://en.wikipedia.org/wiki/Cardinal_number cardinal numbers] and the [http://en.wikipedia.org/wiki/Continuum_hypothesis continuum hypothesis], | ||
− | * | + | * 1896 아다마르와 드라발레푸생이 (독립적으로) [[소수 정리]]를 증명함 |
* [http://en.wikipedia.org/wiki/1896 1896] - [http://en.wikipedia.org/wiki/Hermann_Minkowski 헤르만 민코프스키]가 정수론에 Geometry of numbers를 도입함. | * [http://en.wikipedia.org/wiki/1896 1896] - [http://en.wikipedia.org/wiki/Hermann_Minkowski 헤르만 민코프스키]가 정수론에 Geometry of numbers를 도입함. | ||
* 1887 - 12월 22일, 라마누잔 탄생([[라마누잔(1887- 1920)|라마누잔의 수학]]) | * 1887 - 12월 22일, 라마누잔 탄생([[라마누잔(1887- 1920)|라마누잔의 수학]]) | ||
137번째 줄: | 139번째 줄: | ||
− | + | ||
== 20세기 == | == 20세기 == | ||
145번째 줄: | 147번째 줄: | ||
* [http://en.wikipedia.org/wiki/1903 1903] - [http://en.wikipedia.org/wiki/Edmund_Georg_Hermann_Landau Edmund Georg Hermann Landau] gives considerably simpler proof of the prime number theorem. | * [http://en.wikipedia.org/wiki/1903 1903] - [http://en.wikipedia.org/wiki/Edmund_Georg_Hermann_Landau Edmund Georg Hermann Landau] gives considerably simpler proof of the prime number theorem. | ||
* 1904 [[푸앵카레의 추측]] | * 1904 [[푸앵카레의 추측]] | ||
− | * [http://en.wikipedia.org/wiki/1905 1905] | + | * [http://en.wikipedia.org/wiki/1905 1905] 아인슈타인 특수상대성 이론 발표 |
* [http://en.wikipedia.org/wiki/1908 1908] - [http://en.wikipedia.org/wiki/Ernst_Zermelo Ernst Zermelo] axiomizes [http://en.wikipedia.org/wiki/Set_theory set theory], thus avoiding Cantor's contradictions, | * [http://en.wikipedia.org/wiki/1908 1908] - [http://en.wikipedia.org/wiki/Ernst_Zermelo Ernst Zermelo] axiomizes [http://en.wikipedia.org/wiki/Set_theory set theory], thus avoiding Cantor's contradictions, | ||
* [http://en.wikipedia.org/wiki/1908 1908] - [http://en.wikipedia.org/wiki/Josip_Plemelj Josip Plemelj] solves the Riemann problem about the existence of a differential equation with a given [http://en.wikipedia.org/wiki/Monodromic_group monodromic group] and uses Sokhotsky - Plemelj formulae, | * [http://en.wikipedia.org/wiki/1908 1908] - [http://en.wikipedia.org/wiki/Josip_Plemelj Josip Plemelj] solves the Riemann problem about the existence of a differential equation with a given [http://en.wikipedia.org/wiki/Monodromic_group monodromic group] and uses Sokhotsky - Plemelj formulae, | ||
− | * [http://en.wikipedia.org/wiki/1912 1912] - [http://en.wikipedia.org/wiki/Luitzen_Egbertus_Jan_Brouwer Luitzen Egbertus Jan Brouwer] | + | * [http://en.wikipedia.org/wiki/1912 1912] - [http://en.wikipedia.org/wiki/Luitzen_Egbertus_Jan_Brouwer Luitzen Egbertus Jan Brouwer] [[브라우어 부동점 정리]] |
* [http://en.wikipedia.org/wiki/1912 1912] - Josip Plemelj publishes simplified proof for the Fermat's Last Theorem for exponent <em style="">n</em> = 5, | * [http://en.wikipedia.org/wiki/1912 1912] - Josip Plemelj publishes simplified proof for the Fermat's Last Theorem for exponent <em style="">n</em> = 5, | ||
* [http://en.wikipedia.org/wiki/1913 1913] - [[라마누잔(1887- 1920)]]이 하디에게 편지를 보냄 | * [http://en.wikipedia.org/wiki/1913 1913] - [[라마누잔(1887- 1920)]]이 하디에게 편지를 보냄 | ||
− | * [http://en.wikipedia.org/wiki/1914 1914] - | + | * [http://en.wikipedia.org/wiki/1914 1914] - 라마누잔이 '<em style="">Modular Equations and Approximations to π</em>'를 출판 |
** [[라마누잔과 파이]] 항목 참조 | ** [[라마누잔과 파이]] 항목 참조 | ||
− | * [http://en.wikipedia.org/wiki/1916 1916] | + | * [http://en.wikipedia.org/wiki/1916 1916] 아인슈타인 일반상대성 이론 발표 |
* [http://en.wikipedia.org/wiki/1910s 1910s] - [http://en.wikipedia.org/wiki/Srinivasa_Aaiyangar_Ramanujan Srinivasa Aaiyangar Ramanujan] develops over 3000 theorems, including properties of [http://en.wikipedia.org/wiki/Highly_composite_number highly composite numbers], the [http://en.wikipedia.org/wiki/Partition_function_%28number_theory%29 partition function] and its [http://en.wikipedia.org/wiki/Asymptotics asymptotics], and [http://en.wikipedia.org/wiki/Ramanujan_theta_function mock theta functions]. He also makes major breakthroughs and discoveries in the areas of [http://en.wikipedia.org/wiki/Gamma_function gamma functions], [http://en.wikipedia.org/wiki/Modular_form modular forms], [http://en.wikipedia.org/wiki/Divergent_series divergent series], [http://en.wikipedia.org/wiki/Hypergeometric_series hypergeometric series] and [http://en.wikipedia.org/wiki/Prime_number_theory prime number theory] | * [http://en.wikipedia.org/wiki/1910s 1910s] - [http://en.wikipedia.org/wiki/Srinivasa_Aaiyangar_Ramanujan Srinivasa Aaiyangar Ramanujan] develops over 3000 theorems, including properties of [http://en.wikipedia.org/wiki/Highly_composite_number highly composite numbers], the [http://en.wikipedia.org/wiki/Partition_function_%28number_theory%29 partition function] and its [http://en.wikipedia.org/wiki/Asymptotics asymptotics], and [http://en.wikipedia.org/wiki/Ramanujan_theta_function mock theta functions]. He also makes major breakthroughs and discoveries in the areas of [http://en.wikipedia.org/wiki/Gamma_function gamma functions], [http://en.wikipedia.org/wiki/Modular_form modular forms], [http://en.wikipedia.org/wiki/Divergent_series divergent series], [http://en.wikipedia.org/wiki/Hypergeometric_series hypergeometric series] and [http://en.wikipedia.org/wiki/Prime_number_theory prime number theory] | ||
* [http://en.wikipedia.org/wiki/1919 1919] - [http://en.wikipedia.org/wiki/Viggo_Brun Viggo Brun] defines [http://en.wikipedia.org/wiki/Brun%27s_constant Brun's constant]<em style="">B</em><sub style="">2</sub> for [http://en.wikipedia.org/wiki/Twin_prime twin primes], | * [http://en.wikipedia.org/wiki/1919 1919] - [http://en.wikipedia.org/wiki/Viggo_Brun Viggo Brun] defines [http://en.wikipedia.org/wiki/Brun%27s_constant Brun's constant]<em style="">B</em><sub style="">2</sub> for [http://en.wikipedia.org/wiki/Twin_prime twin primes], | ||
166번째 줄: | 168번째 줄: | ||
* [http://en.wikipedia.org/wiki/1942 1942] - [http://en.wikipedia.org/wiki/G.C._Danielson G.C. Danielson] and [http://en.wikipedia.org/wiki/Cornelius_Lanczos Cornelius Lanczos] develop a [http://en.wikipedia.org/wiki/Fast_Fourier_Transform Fast Fourier Transform] algorithm, | * [http://en.wikipedia.org/wiki/1942 1942] - [http://en.wikipedia.org/wiki/G.C._Danielson G.C. Danielson] and [http://en.wikipedia.org/wiki/Cornelius_Lanczos Cornelius Lanczos] develop a [http://en.wikipedia.org/wiki/Fast_Fourier_Transform Fast Fourier Transform] algorithm, | ||
* [http://en.wikipedia.org/wiki/1943 1943] - [http://en.wikipedia.org/w/index.php?title=Kenneth_Levenberg&action=edit&redlink=1 Kenneth Levenberg] proposes a method for nonlinear least squares fitting, | * [http://en.wikipedia.org/wiki/1943 1943] - [http://en.wikipedia.org/w/index.php?title=Kenneth_Levenberg&action=edit&redlink=1 Kenneth Levenberg] proposes a method for nonlinear least squares fitting, | ||
+ | * 1948 클로드 섀넌 ''A Mathematical Theory of Communication'' 출간 | ||
+ | * 1948 에르디시와 셀베르그가 복소함수론을 사용하지 않는 초등적 방법으로 [[소수 정리]]를 증명 | ||
* [http://en.wikipedia.org/wiki/1948 1948] - John von Neumann mathematically studies self-reproducing machines, | * [http://en.wikipedia.org/wiki/1948 1948] - John von Neumann mathematically studies self-reproducing machines, | ||
* [http://en.wikipedia.org/wiki/1949 1949] - 폰노이만이 에니악을 이용하여 파이를 소수점 2,037 자리까지 계산함 | * [http://en.wikipedia.org/wiki/1949 1949] - 폰노이만이 에니악을 이용하여 파이를 소수점 2,037 자리까지 계산함 | ||
185번째 줄: | 189번째 줄: | ||
* [http://en.wikipedia.org/wiki/1965 1965] - [http://en.wikipedia.org/wiki/James_Cooley James Cooley] and [http://en.wikipedia.org/wiki/John_Tukey John Tukey] present an influential [http://en.wikipedia.org/wiki/Fast_Fourier_Transform Fast Fourier Transform] algorithm, | * [http://en.wikipedia.org/wiki/1965 1965] - [http://en.wikipedia.org/wiki/James_Cooley James Cooley] and [http://en.wikipedia.org/wiki/John_Tukey John Tukey] present an influential [http://en.wikipedia.org/wiki/Fast_Fourier_Transform Fast Fourier Transform] algorithm, | ||
* [http://en.wikipedia.org/wiki/1966 1966] - [http://en.wikipedia.org/w/index.php?title=E.J._Putzer&action=edit&redlink=1 E.J. Putzer] presents two methods for computing the [http://en.wikipedia.org/wiki/Matrix_exponential exponential of a matrix] in terms of a polynomial in that matrix, | * [http://en.wikipedia.org/wiki/1966 1966] - [http://en.wikipedia.org/w/index.php?title=E.J._Putzer&action=edit&redlink=1 E.J. Putzer] presents two methods for computing the [http://en.wikipedia.org/wiki/Matrix_exponential exponential of a matrix] in terms of a polynomial in that matrix, | ||
− | * [http://en.wikipedia.org/wiki/1966 1966] - [http://en.wikipedia.org/wiki/Abraham_Robinson Abraham Robinson] presents [http://en.wikipedia.org/wiki/Non-standard_analysis Non-standard analysis]. | + | * [http://en.wikipedia.org/wiki/1966 1966] - [http://en.wikipedia.org/wiki/Abraham_Robinson Abraham Robinson] presents [http://en.wikipedia.org/wiki/Non-standard_analysis Non-standard analysis]. |
* 1966-67년 앨런 베이커가 [[베이커의 정리]]를 증명함 | * 1966-67년 앨런 베이커가 [[베이커의 정리]]를 증명함 | ||
* 1966-67년 스타크와 베이커에 의해 [[가우스의 class number one 문제]] 증명함 | * 1966-67년 스타크와 베이커에 의해 [[가우스의 class number one 문제]] 증명함 | ||
193번째 줄: | 197번째 줄: | ||
* [http://en.wikipedia.org/wiki/1975 1975] - [http://en.wikipedia.org/wiki/Beno%C3%AEt_Mandelbrot Benoît Mandelbrot] publishes <em style="">Les objets fractals, forme, hasard et dimension</em>, | * [http://en.wikipedia.org/wiki/1975 1975] - [http://en.wikipedia.org/wiki/Beno%C3%AEt_Mandelbrot Benoît Mandelbrot] publishes <em style="">Les objets fractals, forme, hasard et dimension</em>, | ||
* [http://en.wikipedia.org/wiki/1976 1976] - [http://en.wikipedia.org/wiki/Kenneth_Appel Kenneth Appel] and [http://en.wikipedia.org/wiki/Wolfgang_Haken Wolfgang Haken] use a computer to prove the [http://en.wikipedia.org/wiki/Four_color_theorem Four color theorem], | * [http://en.wikipedia.org/wiki/1976 1976] - [http://en.wikipedia.org/wiki/Kenneth_Appel Kenneth Appel] and [http://en.wikipedia.org/wiki/Wolfgang_Haken Wolfgang Haken] use a computer to prove the [http://en.wikipedia.org/wiki/Four_color_theorem Four color theorem], | ||
− | * 1978년 Roger | + | * 1978년 Roger Apéry가 [[ζ(3)는 무리수이다(아페리의 정리)]] 를 증명 |
* [http://en.wikipedia.org/wiki/1983 1983] - [http://en.wikipedia.org/wiki/Gerd_Faltings Gerd Faltings] proves the [http://en.wikipedia.org/wiki/Mordell_conjecture Mordell conjecture] and thereby shows that there are only finitely many whole number solutions for each exponent of Fermat's Last Theorem, | * [http://en.wikipedia.org/wiki/1983 1983] - [http://en.wikipedia.org/wiki/Gerd_Faltings Gerd Faltings] proves the [http://en.wikipedia.org/wiki/Mordell_conjecture Mordell conjecture] and thereby shows that there are only finitely many whole number solutions for each exponent of Fermat's Last Theorem, | ||
* [http://en.wikipedia.org/wiki/1983 1983] - 유한단순군의 분류 완료 | * [http://en.wikipedia.org/wiki/1983 1983] - 유한단순군의 분류 완료 | ||
204번째 줄: | 208번째 줄: | ||
* [http://en.wikipedia.org/wiki/2000 2000] - the [http://en.wikipedia.org/wiki/Clay_Mathematics_Institute Clay Mathematics Institute] proposes the seven [http://en.wikipedia.org/wiki/Millennium_Prize_Problems Millennium Prize Problems] of unsolved important classic mathematical questions. | * [http://en.wikipedia.org/wiki/2000 2000] - the [http://en.wikipedia.org/wiki/Clay_Mathematics_Institute Clay Mathematics Institute] proposes the seven [http://en.wikipedia.org/wiki/Millennium_Prize_Problems Millennium Prize Problems] of unsolved important classic mathematical questions. | ||
− | + | ||
− | + | ||
==중요 수학 저술== | ==중요 수학 저술== | ||
− | + | * Lizhen Ji, [http://www.intlpress.com/site/pub/pages/books/items/00000417/index.html Great Mathematics Books of the Twentieth Century : A Personal Journey], 2014 | |
+ | * [http://www.gutenberg.org/wiki/Mathematics_%28Bookshelf%29 Mathematics (Bookshelf), Project Gutenberg] | ||
* [http://www.17centurymaths.com/ Some Mathematical Works of the 17th & 18th Centuries Translated mainly from Latin into English.] | * [http://www.17centurymaths.com/ Some Mathematical Works of the 17th & 18th Centuries Translated mainly from Latin into English.] | ||
* http://en.wikipedia.org/wiki/List_of_important_publications_in_mathematics | * http://en.wikipedia.org/wiki/List_of_important_publications_in_mathematics | ||
− | + | ||
+ | |||
+ | |||
− | |||
==기구의 설립== | ==기구의 설립== | ||
* [[계몽주의 시기 과학의 조직화와 제도화]] | * [[계몽주의 시기 과학의 조직화와 제도화]] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==관련링크와 웹페이지== | ==관련링크와 웹페이지== | ||
239번째 줄: | 235번째 줄: | ||
* [http://turnbull.dcs.st-and.ac.uk/%7Ehistory/Indexes/Hist_Topics_alph.html History Topics: Alphabetical Index] | * [http://turnbull.dcs.st-and.ac.uk/%7Ehistory/Indexes/Hist_Topics_alph.html History Topics: Alphabetical Index] | ||
− | + | ||
==관련도서== | ==관련도서== | ||
* Cajori, History of Mathematical Notat | * Cajori, History of Mathematical Notat | ||
− | * 도서내검색 | + | * 도서내검색 |
** [http://books.google.com/books?q=%EC%88%98%ED%95%99%EC%82%AC http://books.google.com/books?q=수학사] | ** [http://books.google.com/books?q=%EC%88%98%ED%95%99%EC%82%AC http://books.google.com/books?q=수학사] | ||
** http://book.daum.net/search/contentSearch.do?query= | ** http://book.daum.net/search/contentSearch.do?query= | ||
− | * 도서검색 | + | * 도서검색 |
** http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords= | ** http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords= | ||
** [http://book.daum.net/search/mainSearch.do?query=%EC%88%98%ED%95%99%EC%82%AC http://book.daum.net/search/mainSearch.do?query=수학사] | ** [http://book.daum.net/search/mainSearch.do?query=%EC%88%98%ED%95%99%EC%82%AC http://book.daum.net/search/mainSearch.do?query=수학사] | ||
− | + | ||
==사전형태의 자료== | ==사전형태의 자료== | ||
* http://en.wikipedia.org/wiki/Timeline_of_mathematics | * http://en.wikipedia.org/wiki/Timeline_of_mathematics | ||
+ | |||
+ | ==메타데이터== | ||
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q737279 Q737279] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'timeline'}, {'LOWER': 'of'}, {'LEMMA': 'mathematics'}] |
2021년 2월 17일 (수) 04:49 기준 최신판
개요
- 연표는 http://en.wikipedia.org/wiki/Timeline_of_mathematics 의 자료를 기초로 번역 시작
- http://blog.daum.net/kangnaru333/15859461
15세기
16세기
- 1545년 카르다노가 'Ars Magna' 를 출판
17세기
- 1600s - Putumana Somayaji writes the "Paddhati", which presents a detailed discussion of various trigonometric series
- 1614 -존 네이피어가 Mirifici Logarithmorum Canonis Descriptio에서 네이피어 로그의 개념을 논함
- 1617 - Henry Briggs discusses decimal logarithms in Logarithmorum Chilias Prima,
- 1618 - 네이피어가 로그와 관련한 작업을 통하여 자연상수에 대한 첫번째 출판을 함
- 1619 - 페르마가 해석기하학을 독립적으로 발견했음을 주장함
- 1619 - 케플러가 두 개의 케플러-Poinsot 다면체를 발견
- 1629 - 페르마가 기초적인 미분학을 발전시킴
- 1634 - Gilles de Roberval 사이클로이드 아래의 면적이 기본원의 세 배임을 증명
- 1636 - Muhammad Baqir Yazdi jointly discovered the pair of amicable numbers 9,363,584 and 9,437,056 along with Descartes (1636)
- 1637 - 데카르트가 '방법서설'을 출판, 페르마가 디오판투스의 '산술' 책의 여백에 페르마의 마지막 정리 를 증명했다고 서술함
- 1637 - 데카르트가 최초로 '허수'라는 용어를 조롱의 의미에서 사용함
- 1654 - 파스칼과 페르마가 확률론을 창시
- 1655 - 존 월리스가 Arithmetica Infinitorum를 저술
- 1658 - 크리스토퍼 렌이 사이클로이드의 길이가 기본원의 네 배임을 증명
- 1660년 영국의 왕립 학회 설립 (Royal Society)
- 1665 - 뉴턴이 미적분학의 기본정리를 연구하고 미적분학을 발전시킴
- 1666년 프랑스의 과학 아카데미(Académie des Sciences) 설립
- 1668 - Nicholas Mercator and William Brouncker discover an infinite series for the logarithm while attempting to calculate the area under a hyperbolic segment,
- 1671 - 제임스 그레고리가 아크탄젠트함수의 급수표현을 발견(그레고리-라이프니츠 급수) (originally discovered by Madhava)
- 1673 - Gottfried Leibniz also develops his version of infinitesimal calculus,
- 1675 - Isaac Newton invents an algorithm for the computation of functional roots,
- 1680s - Gottfried Leibniz works on symbolic logic,
- 1691 - Gottfried Leibniz discovers the technique of separation of variables for ordinary differential equations,
- 1693 - Edmund Halley prepares the first mortality tables statistically relating death rate to age,
- 1696 - Guillaume de L'Hôpital states his rule for the computation of certain limits,
- 1696 - 자콥 베르누이와 요한 베르누이가 최단시간강하곡선 문제(Brachistochrone problem)를 해결함. 변분법의 첫번째 결과.
18세기
- 1706 - 마친, 마친(Machin)의 공식을 활용하여 파이값 100자리까지 계산
- 1707 오일러 출생
- 1712 - 브룩 테일러의 테일러 급수
- 1722 - 드 무아브르의 정리, 복소수와 정다각형 발견
- 1724 - Abraham De Moivre studies mortality statistics and the foundation of the theory of annuities in Annuities on Lives,
- 1730 - 제임스 스털링이 The Differential Method를 출판함
- 1733 - Giovanni Gerolamo Saccheri studies what geometry would be like if Euclid's fifth postulate were false,
- 1733 - 드무아브르가 정규분포의 확률밀도함수를 통해 이항분포의 근사식을 얻음. 드무아브르-라플라스 중심극한정리 참조.
- 1734 - 오일러가 일계 선형미분방정식의 적분인자를 통한 해법을 구함
- 1735 - 오일러가 바젤 문제를 해결함 오일러와 바젤문제(완전제곱수의 역수들의 합)
- 1735 - 오일러가 쾨니히스부르크의 다리 문제를 해결하고 그래프 이론을 창시함
- 1739 - 오일러가 상수계수 선형미분방정식의 일반해를 구함
- 1742 - 오일러가 sin x/x 의 무한곱 표현을 얻음 삼각함수와 무한곱 표현
- 1742 - 골드바흐 추측
- 1748 - Maria Gaetana Agnesi discusses analysis in Instituzioni Analitiche ad Uso della Gioventu Italiana,
- 1761 - Thomas Bayes proves Bayes' theorem,
- 1761 - 람베르트가 파이 π는 무리수 임을 증명
- 1762 - 라그랑지가 발산 정리(divergence theorem)를 발견
- 1783 오일러 사망
- 1789 - Jurij Vega improves Machin's formula and computes π to 140 decimal places,
- 1794 - Jurij Vega publishes Thesaurus Logarithmorum Completus,
- 1796 - 가우스가 정17각형의 작도 문제를 해결함.
- 1797 - Caspar Wessel associates vectors with complex numbers and studies complex number operations in geometrical terms,
- 1798 르장드르가 소수 정리를 추측
- 1799 - 가우스가 대수학의 기본정리를 증명함
- 1799 - Paolo Ruffini partially proves the Abel–Ruffini theorem that quintic or higher equations cannot be solved by a general formula,
19세기
- 1801 - 가우스가 Disquisitiones Arithmeticae를 출판함.
- 1805 - 르장드르가 최소자승의 법칙을 도입함.
- 1806 - Louis Poinsot 이 나머지 두 개의 케플러-Poinsot 다면체를 발견(1619년을 볼 것)
- 1806 - Jean-Robert Argand 가 대수학의 기본정리를 증명하고 Argand diagram 을 발표함
- 1807 - 푸리에가 함수의 삼각함수로의 분해를 발표, On the Propagation of Heat in Solid Bodies 푸리에 급수, 열방정식
- 1811 - Carl Friedrich Gauss discusses the meaning of integrals with complex limits and briefly examines the dependence of such integrals on the chosen path of integration,
- 1815 - Siméon-Denis Poisson carries out integrations along paths in the complex plane,
- 1817 - Bernard Bolzano presents the intermediate value theorem---a continuous function which is negative at one point and positive at another point must be zero for at least one point in between,
- 1822 -코쉬가 복소함수론에서 사각형의 둘레를 따라 적분한데 대한 코쉬정리를 발표함
- 1822 - 푸리에가 '열의 해석적 이론 Théorie Analytique de la Chaleur'을 출판
- 1824 - 아벨이 일반적인 5차 이상의 방정식의 근의 공식이 없음을 증명함. 5차방정식의 근의 공식과 아벨의 증명 참조
- 1825 - 코쉬가 일반적인 적분경로에 대한 코쉬 적분 정리를 발표함 he assumes the function being integrated has a continuous derivative, and he introduces the theory of residues in complex analysis,
- 1825 - 디리클레와 르장드르가 n = 5인 경우에 대해 페르마의 마지막 정리를 증명
- 1825 - André-Marie Ampère 가 스토크스 정리를 발견
- 1828 - 조지 그린(George Green)이 그린 정리 를 증명함
- 1829 - 볼리아이, 가우스, 로바체프스키가 쌍곡기하학을 발견
- 1831 - Mikhail Vasilievich Ostrogradsky rediscovers and gives the first proof of the divergence theorem earlier described by Lagrange, Gauss and Green,
- 1832 - Évariste Galois presents a general condition for the solvability of algebraic equations, thereby essentially founding group theory and Galois theory,
- 1832 - 디리클레가 n = 14인 경우의 페르마의 마지막 정리를 증명
- 1837 - 디리클레가 등차수열의 소수분포에 관한 디리클레 정리를 증명
- 1837 - 피에르 완첼(Pierre Wantsel)이 두배의 부피를 갖는 정육면체(The duplication of the cube)과 각의 3등분(The trisection of an angle) 문제가 자와 컴파스로 해결불가능임을 증명, as well as the full completion of the problem of constructability of regular polygons
- 1839 - 디리클레가 디리클레 유수 (class number) 공식 을 증명함
- 1841 - Karl Weierstrass discovers but does not publish the Laurent expansion theorem,
- 1843 - Pierre-Alphonse Laurent discovers and presents the Laurent expansion theorem,
- 1843 - 해밀턴이 사원수 를 발견함
- 1844 - 리우빌이 초월수인 리우빌 수를 구성함
- 1847 - George Boole formalizes symbolic logic in The Mathematical Analysis of Logic, defining what is now called Boolean algebra,
- 1849 - George Gabriel Stokes shows that solitary waves can arise from a combination of periodic waves,
- 1850 - Victor Alexandre Puiseux distinguishes between poles and branch points and introduces the concept of essential singular points,
- 1850 - 스토크스가 스토크스 정리 를 재발견하고 증명함
- 1854 - 리만이 리만기하학을 소개
- 1854 - 케일리가 사원수가 4차원 공간의 회전을 나타낼 수 있음을 보임
- 1858 - 뫼비우스가 뫼비우스의 띠를 발견
- 1858 - 에르미트와 크로네커가 타원함수를 이용하여 오차방정식의 해를 구함 ([오차방정식과 정이십면체]])
- 1859 - 리만이 리만가설을 발표
- 1870 - Felix Klein constructs an analytic geometry for Lobachevski's geometry thereby establishing its self-consistency and the logical independence of Euclid's fifth postulate,
- 1873 - 에르미트가 자연상수 e는 초월수임을 증명
- 1873 - 프로베니우스(Georg Frobenius)가 정규특이점(regular singular points)을 가지는 선형미분방정식의 급수해 찾는 방법을 소개함
- 1874 - Georg Cantor shows that the set of all real numbers is uncountably infinite but the set of all algebraic numbers is countably infinite. Contrary to widely held beliefs, his method was not his famous diagonal argument, which he published three years later. (Nor did he formulate set theory at this time.)
- 1877 - 클라인이 '정이십면체와 오차방정식 강의' 를 출판함
- 1882 - 린데만이 파이는 초월수임을 증명하고 따라서 원과 같은 넓이를 갖는 정사각형의 작도가 불가능함을 증명
- 1882 - 펠릭스 클라인이 클라인씨의 병을 발견
- 1895 - Diederik Korteweg and Gustav de Vries derive the KdV equation to describe the development of long solitary water waves in a canal of rectangular cross section,
- 1895 - Georg Cantor publishes a book about set theory containing the arithmetic of infinite cardinal numbers and the continuum hypothesis,
- 1896 아다마르와 드라발레푸생이 (독립적으로) 소수 정리를 증명함
- 1896 - 헤르만 민코프스키가 정수론에 Geometry of numbers를 도입함.
- 1887 - 12월 22일, 라마누잔 탄생(라마누잔의 수학)
- 1899 - Georg Cantor discovers a contradiction in his set theory,
- 1899 - David Hilbert presents a set of self-consistent geometric axioms in Foundations of Geometry,
- 1900 - David Hilbert states his list of 23 problems which show where some further mathematical work is needed.
20세기
- 1901 - Élie Cartan develops the exterior derivative,
- 1903 - Carle David Tolme Runge presents a fast Fourier Transform algorithm,
- 1903 - Edmund Georg Hermann Landau gives considerably simpler proof of the prime number theorem.
- 1904 푸앵카레의 추측
- 1905 아인슈타인 특수상대성 이론 발표
- 1908 - Ernst Zermelo axiomizes set theory, thus avoiding Cantor's contradictions,
- 1908 - Josip Plemelj solves the Riemann problem about the existence of a differential equation with a given monodromic group and uses Sokhotsky - Plemelj formulae,
- 1912 - Luitzen Egbertus Jan Brouwer 브라우어 부동점 정리
- 1912 - Josip Plemelj publishes simplified proof for the Fermat's Last Theorem for exponent n = 5,
- 1913 - 라마누잔(1887- 1920)이 하디에게 편지를 보냄
- 1914 - 라마누잔이 'Modular Equations and Approximations to π'를 출판
- 라마누잔과 파이 항목 참조
- 1916 아인슈타인 일반상대성 이론 발표
- 1910s - Srinivasa Aaiyangar Ramanujan develops over 3000 theorems, including properties of highly composite numbers, the partition function and its asymptotics, and mock theta functions. He also makes major breakthroughs and discoveries in the areas of gamma functions, modular forms, divergent series, hypergeometric series and prime number theory
- 1919 - Viggo Brun defines Brun's constantB2 for twin primes,
- 1920 - 4월 26일 라마누잔 사망
- 1928 - John von Neumann begins devising the principles of game theory and proves the minimax theorem,
- 1930 - Casimir Kuratowski shows that the three-cottage problem has no solution,
- 1931 - Kurt Gödel proves his incompleteness theorem which shows that every axiomatic system for mathematics is either incomplete or inconsistent,
- 1931 - Georges de Rham develops theorems in cohomology and characteristic classes,
- 1933 - Karol Borsuk and Stanislaw Ulam present the Borsuk-Ulam antipodal-point theorem,
- 1933 - Andrey Nikolaevich Kolmogorov publishes his book Basic notions of the calculus of probability (Grundbegriffe der Wahrscheinlichkeitsrechnung) which contains an axiomatization of probability based on measure theory,
- 1940 - Kurt Gödel shows that neither the continuum hypothesis nor the axiom of choice can be disproven from the standard axioms of set theory,
- 1942 - G.C. Danielson and Cornelius Lanczos develop a Fast Fourier Transform algorithm,
- 1943 - Kenneth Levenberg proposes a method for nonlinear least squares fitting,
- 1948 클로드 섀넌 A Mathematical Theory of Communication 출간
- 1948 에르디시와 셀베르그가 복소함수론을 사용하지 않는 초등적 방법으로 소수 정리를 증명
- 1948 - John von Neumann mathematically studies self-reproducing machines,
- 1949 - 폰노이만이 에니악을 이용하여 파이를 소수점 2,037 자리까지 계산함
- 1950 - Stanislaw Ulam and John von Neumann present cellular automata dynamical systems,
- 1950 해밍코드(Hamming codes)
- 1952 히그너에 의해 가우스의 class number one 문제의 증명이 얻어지나 옳은 것으로 인정받지 못함
- 1953 - Nicholas Metropolis introduces the idea of thermodynamic simulated annealing algorithms,
- 1955 - H. S. M. Coxeter et al. publish the complete list of uniform polyhedron,
- 1955 - Enrico Fermi, John Pasta, and Stanislaw Ulam numerically study a nonlinear spring model of heat conduction and discover solitary wave type behavior,
- 1960 - C. A. R. Hoare invents the quicksort algorithm,
- 1960 - Irving S. Reed and Gustave Solomon present the Reed-Solomon error-correcting code,
- 1961 - Daniel Shanks and John Wrench compute π to 100,000 decimal places using an inverse-tangent identity and an IBM-7090 computer,
- 1962 - Donald Marquardt proposes the Levenberg-Marquardt nonlinear least squares fitting algorithm,
- 1963 - Paul Cohen uses his technique of forcing to show that neither the continuum hypothesis nor the axiom of choice can be proven from the standard axioms of set theory,
- 1963 - Martin Kruskal and Norman Zabusky analytically study the Fermi-Pasta-Ulam heat conduction problem in the continuum limit and find that the KdV equation governs this system,
- 1963 - meteorologist and mathematician Edward Norton Lorenz published solutions for a simplified mathematical model of atmospheric turbulence - generally known as chaotic behaviour and strange attractors or Lorenz Attractor - also the Butterfly Effect,
- 1965 - Iranian mathematician Lotfi Asker Zadeh founded fuzzy set theory as an extension of the classical notion of set and he founded the field of Fuzzy Mathematics,
- 1965 - Martin Kruskal and Norman Zabusky numerically study colliding solitary waves in plasmas and find that they do not disperse after collisions,
- 1965 - James Cooley and John Tukey present an influential Fast Fourier Transform algorithm,
- 1966 - E.J. Putzer presents two methods for computing the exponential of a matrix in terms of a polynomial in that matrix,
- 1966 - Abraham Robinson presents Non-standard analysis.
- 1966-67년 앨런 베이커가 베이커의 정리를 증명함
- 1966-67년 스타크와 베이커에 의해 가우스의 class number one 문제 증명함
- 1967 - Robert Langlands formulates the influential Langlands program of conjectures relating number theory and representation theory,
- 1968 - Michael Atiyah and Isadore Singer prove the Atiyah-Singer index theorem about the index of elliptic operators,
- 1973 - Lotfi Zadeh founded the field of fuzzy logic,
- 1975 - Benoît Mandelbrot publishes Les objets fractals, forme, hasard et dimension,
- 1976 - Kenneth Appel and Wolfgang Haken use a computer to prove the Four color theorem,
- 1978년 Roger Apéry가 ζ(3)는 무리수이다(아페리의 정리) 를 증명
- 1983 - Gerd Faltings proves the Mordell conjecture and thereby shows that there are only finitely many whole number solutions for each exponent of Fermat's Last Theorem,
- 1983 - 유한단순군의 분류 완료
- 1985 - Louis de Branges de Bourcia proves the Bieberbach conjecture,
- 1987 - Yasumasa Kanada, David Bailey, Jonathan Borwein, and Peter Borwein use iterative modular equation approximations to elliptic integrals and a NEC SX-2supercomputer to compute π to 134 million decimal places,
- 1991 - Alain Connes and John W. Lott develop non-commutative geometry,
- 1994 - 앤드류 와일스Andrew Wiles가 타니야마-시무라 추측(정리) 를 부분적으로 증명하고 그 결과로 페르마의 마지막 정리를 증명함
- 1998 - Thomas Callister Hales (almost certainly) 케플러의 추측 증명
- 1999 - 타니야마-시무라 추측(정리) 증명
- 2000 - the Clay Mathematics Institute proposes the seven Millennium Prize Problems of unsolved important classic mathematical questions.
중요 수학 저술
- Lizhen Ji, Great Mathematics Books of the Twentieth Century : A Personal Journey, 2014
- Mathematics (Bookshelf), Project Gutenberg
- Some Mathematical Works of the 17th & 18th Centuries Translated mainly from Latin into English.
- http://en.wikipedia.org/wiki/List_of_important_publications_in_mathematics
기구의 설립
관련링크와 웹페이지
- The History of the Calculus and the Development of Computer Algebra Systems
- History of Mathematics Web Sites
- Earliest Known Uses of Some of the Words of Mathematics
- Earliest Uses of Various Mathematical Symbols
- 'Bite-Sized' History of Mathematics Resources for use in the teaching of mathematics
- History Topics: Alphabetical Index
관련도서
- Cajori, History of Mathematical Notat
- 도서내검색
- 도서검색
사전형태의 자료
메타데이터
위키데이터
- ID : Q737279
Spacy 패턴 목록
- [{'LOWER': 'timeline'}, {'LOWER': 'of'}, {'LEMMA': 'mathematics'}]