"수학사 연표"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (Pythagoras0 사용자가 수학사연표 (역사) 문서를 수학사 연표 문서로 옮겼습니다.)
 
(같은 사용자의 중간 판 24개는 보이지 않습니다)
3번째 줄: 3번째 줄:
 
* http://blog.daum.net/kangnaru333/15859461
 
* http://blog.daum.net/kangnaru333/15859461
  
 
+
  
 
==15세기==
 
==15세기==
  
 
+
  
 
+
  
 
+
  
 
==16세기==
 
==16세기==
17번째 줄: 17번째 줄:
 
* 1545년 카르다노가 'Ars Magna' 를 출판
 
* 1545년 카르다노가 'Ars Magna' 를 출판
  
 
+
  
 
+
  
 
== 17세기 ==
 
== 17세기 ==
26번째 줄: 26번째 줄:
 
* [http://en.wikipedia.org/wiki/1614 1614] -존 네이피어가 <em style="">Mirifici Logarithmorum Canonis Descriptio</em>에서 네이피어 로그의 개념을 논함
 
* [http://en.wikipedia.org/wiki/1614 1614] -존 네이피어가 <em style="">Mirifici Logarithmorum Canonis Descriptio</em>에서 네이피어 로그의 개념을 논함
 
* [http://en.wikipedia.org/wiki/1617 1617] - [http://en.wikipedia.org/wiki/Henry_Briggs_%28mathematician%29 Henry Briggs] discusses decimal logarithms in <em style="">Logarithmorum Chilias Prima</em>,
 
* [http://en.wikipedia.org/wiki/1617 1617] - [http://en.wikipedia.org/wiki/Henry_Briggs_%28mathematician%29 Henry Briggs] discusses decimal logarithms in <em style="">Logarithmorum Chilias Prima</em>,
* [http://en.wikipedia.org/wiki/1618 1618] - 네이피어가 로그와 관련한 작업을 통하여 [[자연상수 e|자연상수]]에 대한 첫번째 출판을 함
+
* [http://en.wikipedia.org/wiki/1618 1618] - 네이피어가 로그와 관련한 작업을 통하여 [[자연상수 e|자연상수]]에 대한 첫번째 출판을 함
 
* 1619 - 페르마가 해석기하학을 독립적으로 발견했음을 주장함
 
* 1619 - 페르마가 해석기하학을 독립적으로 발견했음을 주장함
 
* [http://en.wikipedia.org/wiki/1619 1619] - 케플러가 두 개의 케플러-Poinsot 다면체를 발견
 
* [http://en.wikipedia.org/wiki/1619 1619] - 케플러가 두 개의 케플러-Poinsot 다면체를 발견
* [http://en.wikipedia.org/wiki/1629 1629] - 페르마가 기초적인 미분학을 발전시킴
+
* [http://en.wikipedia.org/wiki/1629 1629] - 페르마가 기초적인 미분학을 발전시킴
 
* 1634 - [http://en.wikipedia.org/wiki/Gilles_de_Roberval Gilles de Roberval] [[사이클로이드]] 아래의 면적이 기본원의 세 배임을 증명
 
* 1634 - [http://en.wikipedia.org/wiki/Gilles_de_Roberval Gilles de Roberval] [[사이클로이드]] 아래의 면적이 기본원의 세 배임을 증명
 
* [http://en.wikipedia.org/wiki/1636 1636] - [http://en.wikipedia.org/wiki/Muhammad_Baqir_Yazdi Muhammad Baqir Yazdi] jointly discovered the pair of [http://en.wikipedia.org/wiki/Amicable_number amicable numbers] 9,363,584 and 9,437,056 along with [http://en.wikipedia.org/wiki/Descartes Descartes] (1636)
 
* [http://en.wikipedia.org/wiki/1636 1636] - [http://en.wikipedia.org/wiki/Muhammad_Baqir_Yazdi Muhammad Baqir Yazdi] jointly discovered the pair of [http://en.wikipedia.org/wiki/Amicable_number amicable numbers] 9,363,584 and 9,437,056 along with [http://en.wikipedia.org/wiki/Descartes Descartes] (1636)
* 1637 - 데카르트가 '방법서설'을 출판, 페르마가 디오판투스의 '산술' 책의 여백에 [[페르마의 마지막 정리]] 를 증명했다고 서술함
+
* 1637 - 데카르트가 '방법서설'을 출판, 페르마가 디오판투스의 '산술' 책의 여백에 [[페르마의 마지막 정리]] 를 증명했다고 서술함
 
* [http://en.wikipedia.org/wiki/1637 1637] - 데카르트가 최초로 '허수'라는 용어를 조롱의 의미에서 사용함
 
* [http://en.wikipedia.org/wiki/1637 1637] - 데카르트가 최초로 '허수'라는 용어를 조롱의 의미에서 사용함
 
* [http://en.wikipedia.org/wiki/1654 1654] - 파스칼과 페르마가 확률론을 창시
 
* [http://en.wikipedia.org/wiki/1654 1654] - 파스칼과 페르마가 확률론을 창시
38번째 줄: 38번째 줄:
 
* 1658 - [http://en.wikipedia.org/wiki/Christopher_Wren 크리스토퍼 렌]이 [[사이클로이드]]의 길이가 기본원의 네 배임을 증명
 
* 1658 - [http://en.wikipedia.org/wiki/Christopher_Wren 크리스토퍼 렌]이 [[사이클로이드]]의 길이가 기본원의 네 배임을 증명
 
* 1660년 영국의 왕립 학회 설립 (Royal Society)
 
* 1660년 영국의 왕립 학회 설립 (Royal Society)
* [http://en.wikipedia.org/wiki/1665 1665] - 뉴턴이 [[미적분학의 기본정리]]를 연구하고 미적분학을 발전시킴
+
* [http://en.wikipedia.org/wiki/1665 1665] - 뉴턴이 [[미적분학의 기본정리]]를 연구하고 미적분학을 발전시킴
 
* 1666년 프랑스의 과학 아카데미(Académie des Sciences) 설립
 
* 1666년 프랑스의 과학 아카데미(Académie des Sciences) 설립
 
* [http://en.wikipedia.org/wiki/1668 1668] - [http://en.wikipedia.org/wiki/Nicholas_Mercator Nicholas Mercator] and [http://en.wikipedia.org/wiki/William_Brouncker William Brouncker] discover an [http://en.wikipedia.org/wiki/Infinite_series infinite series] for the logarithm while attempting to calculate the area under a [http://en.wikipedia.org/w/index.php?title=Hyperbolic_segment&action=edit&redlink=1 hyperbolic segment],
 
* [http://en.wikipedia.org/wiki/1668 1668] - [http://en.wikipedia.org/wiki/Nicholas_Mercator Nicholas Mercator] and [http://en.wikipedia.org/wiki/William_Brouncker William Brouncker] discover an [http://en.wikipedia.org/wiki/Infinite_series infinite series] for the logarithm while attempting to calculate the area under a [http://en.wikipedia.org/w/index.php?title=Hyperbolic_segment&action=edit&redlink=1 hyperbolic segment],
* [http://en.wikipedia.org/wiki/1671 1671] - 제임스 그레고리가 아크탄젠트함수의 급수표현을 발견([[그레고리-라이프니츠 급수]]) (originally discovered by [http://en.wikipedia.org/wiki/Madhava_of_Sangamagrama Madhava])
+
* [http://en.wikipedia.org/wiki/1671 1671] - 제임스 그레고리가 아크탄젠트함수의 급수표현을 발견([[그레고리-라이프니츠 급수]]) (originally discovered by [http://en.wikipedia.org/wiki/Madhava_of_Sangamagrama Madhava])
 
* [http://en.wikipedia.org/wiki/1673 1673] - [http://en.wikipedia.org/wiki/Gottfried_Leibniz Gottfried Leibniz] also develops his version of [http://en.wikipedia.org/wiki/Infinitesimal_calculus infinitesimal calculus],
 
* [http://en.wikipedia.org/wiki/1673 1673] - [http://en.wikipedia.org/wiki/Gottfried_Leibniz Gottfried Leibniz] also develops his version of [http://en.wikipedia.org/wiki/Infinitesimal_calculus infinitesimal calculus],
 
* [http://en.wikipedia.org/wiki/1675 1675] - Isaac Newton invents an algorithm for the [http://en.wikipedia.org/wiki/Newton%27s_method computation of functional roots],
 
* [http://en.wikipedia.org/wiki/1675 1675] - Isaac Newton invents an algorithm for the [http://en.wikipedia.org/wiki/Newton%27s_method computation of functional roots],
49번째 줄: 49번째 줄:
 
* [http://en.wikipedia.org/wiki/1696 1696] - [http://en.wikipedia.org/wiki/Guillaume_Fran%C3%A7ois_Antoine,_Marquis_de_l%27H%C3%B4pital Guillaume de L'Hôpital] states [http://en.wikipedia.org/wiki/L%27H%C3%B4pital%27s_rule his rule] for the computation of certain [http://en.wikipedia.org/wiki/Limit_%28mathematics%29 limits],
 
* [http://en.wikipedia.org/wiki/1696 1696] - [http://en.wikipedia.org/wiki/Guillaume_Fran%C3%A7ois_Antoine,_Marquis_de_l%27H%C3%B4pital Guillaume de L'Hôpital] states [http://en.wikipedia.org/wiki/L%27H%C3%B4pital%27s_rule his rule] for the computation of certain [http://en.wikipedia.org/wiki/Limit_%28mathematics%29 limits],
 
* 1696 - 자콥 베르누이와 요한 베르누이가 [[최단시간강하곡선 문제(Brachistochrone problem)]]를 해결함. [[변분법]]의 첫번째 결과.
 
* 1696 - 자콥 베르누이와 요한 베르누이가 [[최단시간강하곡선 문제(Brachistochrone problem)]]를 해결함. [[변분법]]의 첫번째 결과.
 
+
  
 
== 18세기 ==
 
== 18세기 ==
 
+
* [http://en.wikipedia.org/wiki/1706 1706] - 마친, [[#|마친(Machin)의 공식]]을 활용하여 파이값 100자리까지 계산
* [http://en.wikipedia.org/wiki/1706 1706] - 마친, [[#|마친(Machin)의 공식]]을 활용하여 파이값 100자리까지 계산
+
* 1707 오일러 출생
 
* [http://en.wikipedia.org/wiki/1712 1712] - 브룩 테일러의 테일러 급수
 
* [http://en.wikipedia.org/wiki/1712 1712] - 브룩 테일러의 테일러 급수
* [http://en.wikipedia.org/wiki/1722 1722] - [[#|드 무아브르의 정리, 복소수와 정다각형]] 발견
+
* [http://en.wikipedia.org/wiki/1722 1722] - [[#|드 무아브르의 정리, 복소수와 정다각형]] 발견
 
* [http://en.wikipedia.org/wiki/1724 1724] - Abraham De Moivre studies mortality statistics and the foundation of the theory of annuities in <em style="">Annuities on Lives</em>,
 
* [http://en.wikipedia.org/wiki/1724 1724] - Abraham De Moivre studies mortality statistics and the foundation of the theory of annuities in <em style="">Annuities on Lives</em>,
 
* [http://en.wikipedia.org/wiki/1730 1730] - [http://en.wikipedia.org/wiki/James_Stirling_%28mathematician%29 제임스 스털링]이 <em style="">The Differential Method</em>를 출판함
 
* [http://en.wikipedia.org/wiki/1730 1730] - [http://en.wikipedia.org/wiki/James_Stirling_%28mathematician%29 제임스 스털링]이 <em style="">The Differential Method</em>를 출판함
 
* [http://en.wikipedia.org/wiki/1733 1733] - [http://en.wikipedia.org/wiki/Giovanni_Gerolamo_Saccheri Giovanni Gerolamo Saccheri] studies what geometry would be like if [http://en.wikipedia.org/wiki/Parallel_postulate Euclid's fifth postulate] were false,
 
* [http://en.wikipedia.org/wiki/1733 1733] - [http://en.wikipedia.org/wiki/Giovanni_Gerolamo_Saccheri Giovanni Gerolamo Saccheri] studies what geometry would be like if [http://en.wikipedia.org/wiki/Parallel_postulate Euclid's fifth postulate] were false,
* 1733 - 드무아브르가 정규분포의 확률밀도함수를 통해 이항분포의 근사식을 얻음. [[드무아브르-라플라스 중심극한정리]] 참조.
+
* 1733 - 드무아브르가 정규분포의 확률밀도함수를 통해 이항분포의 근사식을 얻음. [[드무아브르-라플라스 중심극한정리]] 참조.
 
* [http://en.wikipedia.org/wiki/1734 1734] - 오일러가 [[일계 선형미분방정식]]의 적분인자를 통한 해법을 구함
 
* [http://en.wikipedia.org/wiki/1734 1734] - 오일러가 [[일계 선형미분방정식]]의 적분인자를 통한 해법을 구함
* [http://en.wikipedia.org/wiki/1735 1735] - [[오일러(1707-1783)|오일러]]가 바젤 문제를 해결함 [[#|오일러와 바젤문제(완전제곱수의 역수들의 합)]]
+
* [http://en.wikipedia.org/wiki/1735 1735] - [[오일러(1707-1783)|오일러]]가 바젤 문제를 해결함 [[#|오일러와 바젤문제(완전제곱수의 역수들의 합)]]
* [http://en.wikipedia.org/wiki/1736 1736] - 오일러가 [[쾨니히스부르크의 다리 문제]]를 해결하고 [http://en.wikipedia.org/wiki/Graph_theory 그래프 이론]을 창시함
+
* [http://en.wikipedia.org/wiki/1736 1735] - 오일러가 [[쾨니히스부르크의 다리 문제]]를 해결하고 [http://en.wikipedia.org/wiki/Graph_theory 그래프 이론]을 창시함
* [http://en.wikipedia.org/wiki/1739 1739] - [[오일러(1707-1783)|오일러]]가 [[상수계수 이계 선형미분방정식|상수계수 선형미분방정식]]의 일반해를 구함
+
* [http://en.wikipedia.org/wiki/1739 1739] - [[오일러(1707-1783)|오일러]][[상수계수 이계 선형미분방정식|상수계수 선형미분방정식]]의 일반해를 구함
 
* 1742 - 오일러가 sin x/x 의 무한곱 표현을 얻음 [[삼각함수의 무한곱 표현|삼각함수와 무한곱 표현]]
 
* 1742 - 오일러가 sin x/x 의 무한곱 표현을 얻음 [[삼각함수의 무한곱 표현|삼각함수와 무한곱 표현]]
* [http://en.wikipedia.org/wiki/1742 1742] - [[골드바흐 추측]]
+
* [http://en.wikipedia.org/wiki/1742 1742] - [[골드바흐 추측]]
 
* [http://en.wikipedia.org/wiki/1748 1748] - [http://en.wikipedia.org/wiki/Maria_Gaetana_Agnesi Maria Gaetana Agnesi] discusses analysis in <em style="">Instituzioni Analitiche ad Uso della Gioventu Italiana</em>,
 
* [http://en.wikipedia.org/wiki/1748 1748] - [http://en.wikipedia.org/wiki/Maria_Gaetana_Agnesi Maria Gaetana Agnesi] discusses analysis in <em style="">Instituzioni Analitiche ad Uso della Gioventu Italiana</em>,
 
* [http://en.wikipedia.org/wiki/1761 1761] - [http://en.wikipedia.org/wiki/Thomas_Bayes Thomas Bayes] proves [http://en.wikipedia.org/wiki/Bayes%27_theorem Bayes' theorem],
 
* [http://en.wikipedia.org/wiki/1761 1761] - [http://en.wikipedia.org/wiki/Thomas_Bayes Thomas Bayes] proves [http://en.wikipedia.org/wiki/Bayes%27_theorem Bayes' theorem],
* 1761 -  람베르트가 [[파이 π는 무리수이다|파이 π는 무리수]] 임을 증명
+
* 1761 - 람베르트가 [[파이 π는 무리수이다|파이 π는 무리수]] 임을 증명
* [http://en.wikipedia.org/wiki/1762 1762] - [http://en.wikipedia.org/wiki/Joseph_Louis_Lagrange Joseph Louis Lagrange] discovers the [http://en.wikipedia.org/wiki/Divergence_theorem divergence theorem],
+
* [http://en.wikipedia.org/wiki/1762 1762] - 라그랑지가 [[발산 정리(divergence theorem)]]를 발견
 +
* 1783 오일러 사망
 
* [http://en.wikipedia.org/wiki/1789 1789] - [http://en.wikipedia.org/wiki/Jurij_Vega Jurij Vega] improves Machin's formula and computes π to 140 decimal places,
 
* [http://en.wikipedia.org/wiki/1789 1789] - [http://en.wikipedia.org/wiki/Jurij_Vega Jurij Vega] improves Machin's formula and computes π to 140 decimal places,
 
* [http://en.wikipedia.org/wiki/1794 1794] - Jurij Vega publishes <em style="">Thesaurus Logarithmorum Completus</em>,
 
* [http://en.wikipedia.org/wiki/1794 1794] - Jurij Vega publishes <em style="">Thesaurus Logarithmorum Completus</em>,
* [http://en.wikipedia.org/wiki/1796 1796] - 가우스가 [[#|정17각형의 작도]] 문제를 해결함.
+
* [http://en.wikipedia.org/wiki/1796 1796] - 가우스가 [[가우스와 정17각형의 작도|정17각형의 작도]] 문제를 해결함.
* 1796 - 르장드르가 소수정리를 추측함.
 
 
* [http://en.wikipedia.org/wiki/1797 1797] - [http://en.wikipedia.org/wiki/Caspar_Wessel Caspar Wessel] associates vectors with [http://en.wikipedia.org/wiki/Complex_number complex numbers] and studies complex number operations in geometrical terms,
 
* [http://en.wikipedia.org/wiki/1797 1797] - [http://en.wikipedia.org/wiki/Caspar_Wessel Caspar Wessel] associates vectors with [http://en.wikipedia.org/wiki/Complex_number complex numbers] and studies complex number operations in geometrical terms,
* [http://en.wikipedia.org/wiki/1799 1799] - 가우스가 [[#|대수학의 기본정리]]를 증명함
+
* 1798 르장드르가 [[소수 정리]]를 추측
 +
* [http://en.wikipedia.org/wiki/1799 1799] - 가우스가 [[대수학의 기본정리]]를 증명함
 
* [http://en.wikipedia.org/wiki/1799 1799] - [http://en.wikipedia.org/wiki/Paolo_Ruffini Paolo Ruffini] partially proves the [http://en.wikipedia.org/wiki/Abel%E2%80%93Ruffini_theorem Abel–Ruffini theorem] that [http://en.wikipedia.org/wiki/Quintic_equation quintic] or higher equations cannot be solved by a general formula,
 
* [http://en.wikipedia.org/wiki/1799 1799] - [http://en.wikipedia.org/wiki/Paolo_Ruffini Paolo Ruffini] partially proves the [http://en.wikipedia.org/wiki/Abel%E2%80%93Ruffini_theorem Abel–Ruffini theorem] that [http://en.wikipedia.org/wiki/Quintic_equation quintic] or higher equations cannot be solved by a general formula,
  
  
  
 
+
  
 
== 19세기 ==
 
== 19세기 ==
  
* [http://en.wikipedia.org/wiki/1801 1801] - 가우스가 <em style="">[http://en.wikipedia.org/wiki/Disquisitiones_Arithmeticae Disquisitiones Arithmeticae]</em>를 출판함.
+
* [http://en.wikipedia.org/wiki/1801 1801] - 가우스가 <em style="">[http://en.wikipedia.org/wiki/Disquisitiones_Arithmeticae Disquisitiones Arithmeticae]</em>를 출판함.
 
* [http://en.wikipedia.org/wiki/1805 1805] - 르장드르가 최소자승의 법칙을 도입함.
 
* [http://en.wikipedia.org/wiki/1805 1805] - 르장드르가 최소자승의 법칙을 도입함.
 
* [http://en.wikipedia.org/wiki/1806 1806] - [http://en.wikipedia.org/wiki/Louis_Poinsot Louis Poinsot] 이 나머지 두 개의 케플러-Poinsot 다면체를 발견(1619년을 볼 것)
 
* [http://en.wikipedia.org/wiki/1806 1806] - [http://en.wikipedia.org/wiki/Louis_Poinsot Louis Poinsot] 이 나머지 두 개의 케플러-Poinsot 다면체를 발견(1619년을 볼 것)
* [http://en.wikipedia.org/wiki/1806 1806] - [http://en.wikipedia.org/wiki/Jean-Robert_Argand Jean-Robert Argand] 가 [[대수학의 기본정리]]를 증명하고 [http://en.wikipedia.org/wiki/Argand_diagram Argand diagram] 을 발표함
+
* [http://en.wikipedia.org/wiki/1806 1806] - [http://en.wikipedia.org/wiki/Jean-Robert_Argand Jean-Robert Argand] [[대수학의 기본정리]]를 증명하고 [http://en.wikipedia.org/wiki/Argand_diagram Argand diagram] 을 발표함
 
* 1807 - 푸리에가 함수의 삼각함수로의 분해를 발표, On the Propagation of Heat in Solid Bodies [[푸리에 급수]], [[열방정식]]
 
* 1807 - 푸리에가 함수의 삼각함수로의 분해를 발표, On the Propagation of Heat in Solid Bodies [[푸리에 급수]], [[열방정식]]
 
* [http://en.wikipedia.org/wiki/1811 1811] - Carl Friedrich Gauss discusses the meaning of integrals with complex limits and briefly examines the dependence of such integrals on the chosen path of integration,
 
* [http://en.wikipedia.org/wiki/1811 1811] - Carl Friedrich Gauss discusses the meaning of integrals with complex limits and briefly examines the dependence of such integrals on the chosen path of integration,
93번째 줄: 94번째 줄:
 
* [http://en.wikipedia.org/wiki/1817 1817] - [http://en.wikipedia.org/wiki/Bernard_Bolzano Bernard Bolzano] presents the [http://en.wikipedia.org/wiki/Intermediate_value_theorem intermediate value theorem]---a [http://en.wikipedia.org/wiki/Continuous_function continuous function] which is negative at one point and positive at another point must be zero for at least one point in between,
 
* [http://en.wikipedia.org/wiki/1817 1817] - [http://en.wikipedia.org/wiki/Bernard_Bolzano Bernard Bolzano] presents the [http://en.wikipedia.org/wiki/Intermediate_value_theorem intermediate value theorem]---a [http://en.wikipedia.org/wiki/Continuous_function continuous function] which is negative at one point and positive at another point must be zero for at least one point in between,
 
* 1822 -코쉬가 [[복소함수론]]에서 사각형의 둘레를 따라 적분한데 대한 코쉬정리를 발표함
 
* 1822 -코쉬가 [[복소함수론]]에서 사각형의 둘레를 따라 적분한데 대한 코쉬정리를 발표함
 +
* 1822 - 푸리에가 '열의 해석적 이론 ''Théorie Analytique de la Chaleur'''을 출판
 
* [http://en.wikipedia.org/wiki/1824 1824] - 아벨이 일반적인 5차 이상의 방정식의 근의 공식이 없음을 증명함. [[5차방정식의 근의 공식과 아벨의 증명]] 참조
 
* [http://en.wikipedia.org/wiki/1824 1824] - 아벨이 일반적인 5차 이상의 방정식의 근의 공식이 없음을 증명함. [[5차방정식의 근의 공식과 아벨의 증명]] 참조
 
* [http://en.wikipedia.org/wiki/1825 1825] - 코쉬가 일반적인 적분경로에 대한 코쉬 적분 정리를 발표함 he assumes the function being integrated has a continuous derivative, and he introduces the theory of [http://en.wikipedia.org/wiki/Residue_%28complex_analysis%29 residues] in [http://en.wikipedia.org/wiki/Complex_analysis complex analysis],
 
* [http://en.wikipedia.org/wiki/1825 1825] - 코쉬가 일반적인 적분경로에 대한 코쉬 적분 정리를 발표함 he assumes the function being integrated has a continuous derivative, and he introduces the theory of [http://en.wikipedia.org/wiki/Residue_%28complex_analysis%29 residues] in [http://en.wikipedia.org/wiki/Complex_analysis complex analysis],
* [http://en.wikipedia.org/wiki/1825 1825] - 디리클레와 르장드르가 <em style="">n</em> = 5인 경우에 대해 [[페르마의 마지막 정리]]를 증명
+
* [http://en.wikipedia.org/wiki/1825 1825] - 디리클레와 르장드르가 <em style="">n</em> = 5인 경우에 대해 [[페르마의 마지막 정리]]를 증명
 
* [http://en.wikipedia.org/wiki/1825 1825] - [http://en.wikipedia.org/wiki/Andre_Marie_Ampere André-Marie Ampère] 가 스토크스 정리를 발견
 
* [http://en.wikipedia.org/wiki/1825 1825] - [http://en.wikipedia.org/wiki/Andre_Marie_Ampere André-Marie Ampère] 가 스토크스 정리를 발견
 
* [http://en.wikipedia.org/wiki/1828 1828] - 조지 그린(George Green)이 [[그린 정리]] 를 증명함
 
* [http://en.wikipedia.org/wiki/1828 1828] - 조지 그린(George Green)이 [[그린 정리]] 를 증명함
* 1829 - 볼리아이, 가우스, 로바체프스키가 [[#|쌍곡기하학]]을 발견
+
* 1829 - 볼리아이, 가우스, 로바체프스키가 [[쌍곡기하학]]을 발견
 
* [http://en.wikipedia.org/wiki/1831 1831] - [http://en.wikipedia.org/wiki/Mikhail_Vasilievich_Ostrogradsky Mikhail Vasilievich Ostrogradsky] rediscovers and gives the first proof of the divergence theorem earlier described by Lagrange, Gauss and Green,
 
* [http://en.wikipedia.org/wiki/1831 1831] - [http://en.wikipedia.org/wiki/Mikhail_Vasilievich_Ostrogradsky Mikhail Vasilievich Ostrogradsky] rediscovers and gives the first proof of the divergence theorem earlier described by Lagrange, Gauss and Green,
 
* [http://en.wikipedia.org/wiki/1832 1832] - [http://en.wikipedia.org/wiki/%C3%89variste_Galois Évariste Galois] presents a general condition for the solvability of [http://en.wikipedia.org/wiki/Algebraic_equation algebraic equations], thereby essentially founding [http://en.wikipedia.org/wiki/Group_theory group theory] and [http://en.wikipedia.org/wiki/Galois_theory Galois theory],
 
* [http://en.wikipedia.org/wiki/1832 1832] - [http://en.wikipedia.org/wiki/%C3%89variste_Galois Évariste Galois] presents a general condition for the solvability of [http://en.wikipedia.org/wiki/Algebraic_equation algebraic equations], thereby essentially founding [http://en.wikipedia.org/wiki/Group_theory group theory] and [http://en.wikipedia.org/wiki/Galois_theory Galois theory],
* 1832 - 디리클레가 <em style="">n</em> = 14인 경우의 [[#|페르마의 마지막 정리]]를 증명
+
* 1832 - 디리클레가 <em style="">n</em> = 14인 경우의 [[페르마의 마지막 정리]]를 증명
* 1837 - 디리클레가 [[#|등차수열의 소수분포에 관한 디리클레 정리]]를 증명
+
* 1837 - 디리클레가 [[등차수열의 소수분포에 관한 디리클레 정리]]를 증명
* 1837 - 피에르 완첼([http://en.wikipedia.org/w/index.php?title=Pierre_Wantsel&action=edit&redlink=1 Pierre Wantsel])이 [[#|두배의 부피를 갖는 정육면체(The duplication of the cube)]]과 [[#|각의 3등분(The trisection of an angle)]] 문제가 자와 컴파스로 해결불가능임을 증명, as well as the full completion of the problem of constructability of regular polygons
+
* 1837 - 피에르 완첼([http://en.wikipedia.org/w/index.php?title=Pierre_Wantsel&action=edit&redlink=1 Pierre Wantsel])이 [[#|두배의 부피를 갖는 정육면체(The duplication of the cube)]][[#|각의 3등분(The trisection of an angle)]] 문제가 자와 컴파스로 해결불가능임을 증명, as well as the full completion of the problem of constructability of regular polygons
 +
* 1839 - 디리클레가 [[디리클레 유수 (class number) 공식]] 을 증명함
 +
** http://en.wikipedia.org/wiki/Johann_Peter_Gustav_Lejeune_Dirichlet 참조
 
* [http://en.wikipedia.org/wiki/1841 1841] - [http://en.wikipedia.org/wiki/Karl_Weierstrass Karl Weierstrass] discovers but does not publish the [http://en.wikipedia.org/wiki/Laurent_expansion_theorem Laurent expansion theorem],
 
* [http://en.wikipedia.org/wiki/1841 1841] - [http://en.wikipedia.org/wiki/Karl_Weierstrass Karl Weierstrass] discovers but does not publish the [http://en.wikipedia.org/wiki/Laurent_expansion_theorem Laurent expansion theorem],
 
* [http://en.wikipedia.org/wiki/1843 1843] - [http://en.wikipedia.org/w/index.php?title=Pierre-Alphonse_Laurent&action=edit&redlink=1 Pierre-Alphonse Laurent] discovers and presents the Laurent expansion theorem,
 
* [http://en.wikipedia.org/wiki/1843 1843] - [http://en.wikipedia.org/w/index.php?title=Pierre-Alphonse_Laurent&action=edit&redlink=1 Pierre-Alphonse Laurent] discovers and presents the Laurent expansion theorem,
* [http://en.wikipedia.org/wiki/1843 1843] - 해밀턴이 [[해밀턴의 사원수(quarternions)|사원수]] 를 발견함
+
* [http://en.wikipedia.org/wiki/1843 1843] - 해밀턴이 [[해밀턴의 사원수(quarternions)|사원수]] 발견함
 
* 1844 - 리우빌이 초월수인 리우빌 수를 구성함
 
* 1844 - 리우빌이 초월수인 리우빌 수를 구성함
 
* [http://en.wikipedia.org/wiki/1847 1847] - [http://en.wikipedia.org/wiki/George_Boole George Boole] formalizes [http://en.wikipedia.org/wiki/Symbolic_logic symbolic logic] in <em style="">The Mathematical Analysis of Logic</em>, defining what is now called [http://en.wikipedia.org/wiki/Boolean_algebra_%28logic%29 Boolean algebra],
 
* [http://en.wikipedia.org/wiki/1847 1847] - [http://en.wikipedia.org/wiki/George_Boole George Boole] formalizes [http://en.wikipedia.org/wiki/Symbolic_logic symbolic logic] in <em style="">The Mathematical Analysis of Logic</em>, defining what is now called [http://en.wikipedia.org/wiki/Boolean_algebra_%28logic%29 Boolean algebra],
113번째 줄: 117번째 줄:
 
* [http://en.wikipedia.org/wiki/1850 1850] - 스토크스가 [[스토크스 정리]] 를 재발견하고 증명함
 
* [http://en.wikipedia.org/wiki/1850 1850] - 스토크스가 [[스토크스 정리]] 를 재발견하고 증명함
 
* 1854 - 리만이 리만기하학을 소개
 
* 1854 - 리만이 리만기하학을 소개
* [http://en.wikipedia.org/wiki/1854 1854] - [http://en.wikipedia.org/wiki/Arthur_Cayley Arthur Cayley] shows that [http://en.wikipedia.org/wiki/Quaternion quaternions] can be used to represent rotations in four-dimensional [http://en.wikipedia.org/wiki/Space space],
+
* [http://en.wikipedia.org/wiki/1854 1854] - 케일리가 [[해밀턴의 사원수(quarternions)|사원수]]가 4차원 공간의 회전을 나타낼 수 있음을 보임
* 1858 - 뫼비우스가 [[#|뫼비우스의 띠]]를 발견
+
* 1858 - 뫼비우스가 [[뫼비우스의 띠]]를 발견
* 1858 - 에르미트와 크로네커가 [[타원함수]]를 이용하여 오차방정식의 해를 구함 ([[#|오차방정식과 정이십면체]])
+
* 1858 - 에르미트와 크로네커가 [[타원함수]]를 이용하여 오차방정식의 해를 구함 ([오차방정식과 정이십면체]])
* [http://en.wikipedia.org/wiki/1859 1859] - 리만이 [[리만가설]]을 발표
+
* [http://en.wikipedia.org/wiki/1859 1859] - 리만이 [[리만가설]]을 발표
 
* [http://en.wikipedia.org/wiki/1870 1870] - [http://en.wikipedia.org/wiki/Felix_Klein Felix Klein] constructs an analytic geometry for Lobachevski's geometry thereby establishing its self-consistency and the logical independence of Euclid's fifth postulate,
 
* [http://en.wikipedia.org/wiki/1870 1870] - [http://en.wikipedia.org/wiki/Felix_Klein Felix Klein] constructs an analytic geometry for Lobachevski's geometry thereby establishing its self-consistency and the logical independence of Euclid's fifth postulate,
* [http://en.wikipedia.org/wiki/1873 1873] - 에르미트가 [[#|자연상수 e는 초월수]] 임을 증명
+
* [http://en.wikipedia.org/wiki/1873 1873] - 에르미트가 자연상수 e는 초월수임을 증명
* [http://en.wikipedia.org/wiki/1873 1873] - 프로베니우스([http://en.wikipedia.org/wiki/Georg_Frobenius Georg Frobenius])가 [[정규특이점(regular singular points)]]을 가지는 선형미분방정식의 급수해 찾는 방법을 소개함
+
* [http://en.wikipedia.org/wiki/1873 1873] - 프로베니우스([http://en.wikipedia.org/wiki/Georg_Frobenius Georg Frobenius])[[정규특이점(regular singular points)]]을 가지는 선형미분방정식의 급수해 찾는 방법을 소개함
 
* [http://en.wikipedia.org/wiki/1874 1874] - [http://en.wikipedia.org/wiki/Georg_Cantor Georg Cantor] shows that the set of all [http://en.wikipedia.org/wiki/Real_number real numbers] is [http://en.wikipedia.org/wiki/Uncountable uncountably infinite] but the set of all [http://en.wikipedia.org/wiki/Algebraic_number algebraic numbers] is [http://en.wikipedia.org/wiki/Countable countably infinite]. Contrary to widely held beliefs, his method was not his famous [http://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument diagonal argument], which he published three years later. (Nor did he formulate [http://en.wikipedia.org/wiki/Set_theory set theory] at this time.)
 
* [http://en.wikipedia.org/wiki/1874 1874] - [http://en.wikipedia.org/wiki/Georg_Cantor Georg Cantor] shows that the set of all [http://en.wikipedia.org/wiki/Real_number real numbers] is [http://en.wikipedia.org/wiki/Uncountable uncountably infinite] but the set of all [http://en.wikipedia.org/wiki/Algebraic_number algebraic numbers] is [http://en.wikipedia.org/wiki/Countable countably infinite]. Contrary to widely held beliefs, his method was not his famous [http://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument diagonal argument], which he published three years later. (Nor did he formulate [http://en.wikipedia.org/wiki/Set_theory set theory] at this time.)
 
* 1877 - 클라인이 '[[5차방정식과 정이십면체|정이십면체와 오차방정식]] 강의' 를 출판함
 
* 1877 - 클라인이 '[[5차방정식과 정이십면체|정이십면체와 오차방정식]] 강의' 를 출판함
* 1882 - 린데만이 [[파이 π는 초월수이다|파이는 초월수]]임을 증명하고 따라서 원이 자와 컴파스로 작도 불가능함을 증명
+
* 1882 - 린데만이 [[파이 π는 초월수이다|파이는 초월수]]임을 증명하고 따라서 [[원과 같은 넓이를 갖는 정사각형의 작도(원적문제 The quadrature of a circle)|원과 같은 넓이를 갖는 정사각형의 작도]]가 불가능함을 증명
 
* 1882 - 펠릭스 클라인이 [[#|클라인씨의 병]]을 발견
 
* 1882 - 펠릭스 클라인이 [[#|클라인씨의 병]]을 발견
 
* [http://en.wikipedia.org/wiki/1895 1895] - [http://en.wikipedia.org/wiki/Diederik_Korteweg Diederik Korteweg] and [http://en.wikipedia.org/wiki/Gustav_de_Vries Gustav de Vries] derive the [http://en.wikipedia.org/wiki/KdV_equation KdV equation] to describe the development of long solitary water waves in a canal of rectangular cross section,
 
* [http://en.wikipedia.org/wiki/1895 1895] - [http://en.wikipedia.org/wiki/Diederik_Korteweg Diederik Korteweg] and [http://en.wikipedia.org/wiki/Gustav_de_Vries Gustav de Vries] derive the [http://en.wikipedia.org/wiki/KdV_equation KdV equation] to describe the development of long solitary water waves in a canal of rectangular cross section,
 
* [http://en.wikipedia.org/wiki/1895 1895] - [http://en.wikipedia.org/wiki/Georg_Cantor Georg Cantor] publishes a book about set theory containing the arithmetic of infinite [http://en.wikipedia.org/wiki/Cardinal_number cardinal numbers] and the [http://en.wikipedia.org/wiki/Continuum_hypothesis continuum hypothesis],
 
* [http://en.wikipedia.org/wiki/1895 1895] - [http://en.wikipedia.org/wiki/Georg_Cantor Georg Cantor] publishes a book about set theory containing the arithmetic of infinite [http://en.wikipedia.org/wiki/Cardinal_number cardinal numbers] and the [http://en.wikipedia.org/wiki/Continuum_hypothesis continuum hypothesis],
* [http://en.wikipedia.org/wiki/1896 1896] - [http://en.wikipedia.org/wiki/Jacques_Hadamard Jacques Hadamard] and [http://en.wikipedia.org/wiki/Charles_Jean_de_la_Vall%C3%A9e-Poussin Charles Jean de la Vallée-Poussin] independently prove the [http://en.wikipedia.org/wiki/Prime_number_theorem prime number theorem],
+
* 1896 아다마르와 드라발레푸생이 (독립적으로) [[소수 정리]]를 증명함
* [http://en.wikipedia.org/wiki/1896 1896] - [http://en.wikipedia.org/wiki/Hermann_Minkowski Hermann Minkowski] presents <em style="">Geometry of numbers</em>,
+
* [http://en.wikipedia.org/wiki/1896 1896] - [http://en.wikipedia.org/wiki/Hermann_Minkowski 헤르만 민코프스키]가 정수론에 Geometry of numbers를 도입함.
 
* 1887 - 12월 22일, 라마누잔 탄생([[라마누잔(1887- 1920)|라마누잔의 수학]])
 
* 1887 - 12월 22일, 라마누잔 탄생([[라마누잔(1887- 1920)|라마누잔의 수학]])
 
* [http://en.wikipedia.org/wiki/1899 1899] - [http://en.wikipedia.org/wiki/Georg_Cantor Georg Cantor] discovers a contradiction in his set theory,
 
* [http://en.wikipedia.org/wiki/1899 1899] - [http://en.wikipedia.org/wiki/Georg_Cantor Georg Cantor] discovers a contradiction in his set theory,
135번째 줄: 139번째 줄:
  
  
 
+
 
 
  
 
== 20세기 ==
 
== 20세기 ==
143번째 줄: 146번째 줄:
 
* [http://en.wikipedia.org/wiki/1903 1903] - [http://en.wikipedia.org/wiki/Carle_David_Tolme_Runge Carle David Tolme Runge] presents a [http://en.wikipedia.org/wiki/Fast_Fourier_Transform fast Fourier Transform] algorithm,
 
* [http://en.wikipedia.org/wiki/1903 1903] - [http://en.wikipedia.org/wiki/Carle_David_Tolme_Runge Carle David Tolme Runge] presents a [http://en.wikipedia.org/wiki/Fast_Fourier_Transform fast Fourier Transform] algorithm,
 
* [http://en.wikipedia.org/wiki/1903 1903] - [http://en.wikipedia.org/wiki/Edmund_Georg_Hermann_Landau Edmund Georg Hermann Landau] gives considerably simpler proof of the prime number theorem.
 
* [http://en.wikipedia.org/wiki/1903 1903] - [http://en.wikipedia.org/wiki/Edmund_Georg_Hermann_Landau Edmund Georg Hermann Landau] gives considerably simpler proof of the prime number theorem.
* [http://en.wikipedia.org/wiki/1905 1905]  아인슈타인 특수상대성 이론 발표
+
* 1904 [[푸앵카레의 추측]]
 +
* [http://en.wikipedia.org/wiki/1905 1905] 아인슈타인 특수상대성 이론 발표
 
* [http://en.wikipedia.org/wiki/1908 1908] - [http://en.wikipedia.org/wiki/Ernst_Zermelo Ernst Zermelo] axiomizes [http://en.wikipedia.org/wiki/Set_theory set theory], thus avoiding Cantor's contradictions,
 
* [http://en.wikipedia.org/wiki/1908 1908] - [http://en.wikipedia.org/wiki/Ernst_Zermelo Ernst Zermelo] axiomizes [http://en.wikipedia.org/wiki/Set_theory set theory], thus avoiding Cantor's contradictions,
 
* [http://en.wikipedia.org/wiki/1908 1908] - [http://en.wikipedia.org/wiki/Josip_Plemelj Josip Plemelj] solves the Riemann problem about the existence of a differential equation with a given [http://en.wikipedia.org/wiki/Monodromic_group monodromic group] and uses Sokhotsky - Plemelj formulae,
 
* [http://en.wikipedia.org/wiki/1908 1908] - [http://en.wikipedia.org/wiki/Josip_Plemelj Josip Plemelj] solves the Riemann problem about the existence of a differential equation with a given [http://en.wikipedia.org/wiki/Monodromic_group monodromic group] and uses Sokhotsky - Plemelj formulae,
* [http://en.wikipedia.org/wiki/1912 1912] - [http://en.wikipedia.org/wiki/Luitzen_Egbertus_Jan_Brouwer Luitzen Egbertus Jan Brouwer] presents the [http://en.wikipedia.org/wiki/Brouwer_fixed-point_theorem Brouwer fixed-point theorem],
+
* [http://en.wikipedia.org/wiki/1912 1912] - [http://en.wikipedia.org/wiki/Luitzen_Egbertus_Jan_Brouwer Luitzen Egbertus Jan Brouwer] [[브라우어 부동점 정리]]
 
* [http://en.wikipedia.org/wiki/1912 1912] - Josip Plemelj publishes simplified proof for the Fermat's Last Theorem for exponent <em style="">n</em> = 5,
 
* [http://en.wikipedia.org/wiki/1912 1912] - Josip Plemelj publishes simplified proof for the Fermat's Last Theorem for exponent <em style="">n</em> = 5,
 
* [http://en.wikipedia.org/wiki/1913 1913] - [[라마누잔(1887- 1920)]]이 하디에게 편지를 보냄
 
* [http://en.wikipedia.org/wiki/1913 1913] - [[라마누잔(1887- 1920)]]이 하디에게 편지를 보냄
* [http://en.wikipedia.org/wiki/1914 1914] - 라마누잔이 '<em style="">Modular Equations and Approximations to π</em>'를 출판<br>
+
* [http://en.wikipedia.org/wiki/1914 1914] - 라마누잔이 '<em style="">Modular Equations and Approximations to π</em>'를 출판
 
** [[라마누잔과 파이]] 항목 참조
 
** [[라마누잔과 파이]] 항목 참조
* [http://en.wikipedia.org/wiki/1916 1916]  아인슈타인 일반상대성 이론 발표
+
* [http://en.wikipedia.org/wiki/1916 1916] 아인슈타인 일반상대성 이론 발표
 
* [http://en.wikipedia.org/wiki/1910s 1910s] - [http://en.wikipedia.org/wiki/Srinivasa_Aaiyangar_Ramanujan Srinivasa Aaiyangar Ramanujan] develops over 3000 theorems, including properties of [http://en.wikipedia.org/wiki/Highly_composite_number highly composite numbers], the [http://en.wikipedia.org/wiki/Partition_function_%28number_theory%29 partition function] and its [http://en.wikipedia.org/wiki/Asymptotics asymptotics], and [http://en.wikipedia.org/wiki/Ramanujan_theta_function mock theta functions]. He also makes major breakthroughs and discoveries in the areas of [http://en.wikipedia.org/wiki/Gamma_function gamma functions], [http://en.wikipedia.org/wiki/Modular_form modular forms], [http://en.wikipedia.org/wiki/Divergent_series divergent series], [http://en.wikipedia.org/wiki/Hypergeometric_series hypergeometric series] and [http://en.wikipedia.org/wiki/Prime_number_theory prime number theory]
 
* [http://en.wikipedia.org/wiki/1910s 1910s] - [http://en.wikipedia.org/wiki/Srinivasa_Aaiyangar_Ramanujan Srinivasa Aaiyangar Ramanujan] develops over 3000 theorems, including properties of [http://en.wikipedia.org/wiki/Highly_composite_number highly composite numbers], the [http://en.wikipedia.org/wiki/Partition_function_%28number_theory%29 partition function] and its [http://en.wikipedia.org/wiki/Asymptotics asymptotics], and [http://en.wikipedia.org/wiki/Ramanujan_theta_function mock theta functions]. He also makes major breakthroughs and discoveries in the areas of [http://en.wikipedia.org/wiki/Gamma_function gamma functions], [http://en.wikipedia.org/wiki/Modular_form modular forms], [http://en.wikipedia.org/wiki/Divergent_series divergent series], [http://en.wikipedia.org/wiki/Hypergeometric_series hypergeometric series] and [http://en.wikipedia.org/wiki/Prime_number_theory prime number theory]
 
* [http://en.wikipedia.org/wiki/1919 1919] - [http://en.wikipedia.org/wiki/Viggo_Brun Viggo Brun] defines [http://en.wikipedia.org/wiki/Brun%27s_constant Brun's constant]<em style="">B</em><sub style="">2</sub> for [http://en.wikipedia.org/wiki/Twin_prime twin primes],
 
* [http://en.wikipedia.org/wiki/1919 1919] - [http://en.wikipedia.org/wiki/Viggo_Brun Viggo Brun] defines [http://en.wikipedia.org/wiki/Brun%27s_constant Brun's constant]<em style="">B</em><sub style="">2</sub> for [http://en.wikipedia.org/wiki/Twin_prime twin primes],
164번째 줄: 168번째 줄:
 
* [http://en.wikipedia.org/wiki/1942 1942] - [http://en.wikipedia.org/wiki/G.C._Danielson G.C. Danielson] and [http://en.wikipedia.org/wiki/Cornelius_Lanczos Cornelius Lanczos] develop a [http://en.wikipedia.org/wiki/Fast_Fourier_Transform Fast Fourier Transform] algorithm,
 
* [http://en.wikipedia.org/wiki/1942 1942] - [http://en.wikipedia.org/wiki/G.C._Danielson G.C. Danielson] and [http://en.wikipedia.org/wiki/Cornelius_Lanczos Cornelius Lanczos] develop a [http://en.wikipedia.org/wiki/Fast_Fourier_Transform Fast Fourier Transform] algorithm,
 
* [http://en.wikipedia.org/wiki/1943 1943] - [http://en.wikipedia.org/w/index.php?title=Kenneth_Levenberg&action=edit&redlink=1 Kenneth Levenberg] proposes a method for nonlinear least squares fitting,
 
* [http://en.wikipedia.org/wiki/1943 1943] - [http://en.wikipedia.org/w/index.php?title=Kenneth_Levenberg&action=edit&redlink=1 Kenneth Levenberg] proposes a method for nonlinear least squares fitting,
 +
* 1948 클로드 섀넌 ''A Mathematical Theory of Communication'' 출간
 +
* 1948 에르디시와 셀베르그가 복소함수론을 사용하지 않는 초등적 방법으로 [[소수 정리]]를 증명
 
* [http://en.wikipedia.org/wiki/1948 1948] - John von Neumann mathematically studies self-reproducing machines,
 
* [http://en.wikipedia.org/wiki/1948 1948] - John von Neumann mathematically studies self-reproducing machines,
 
* [http://en.wikipedia.org/wiki/1949 1949] - 폰노이만이 에니악을 이용하여 파이를 소수점 2,037 자리까지 계산함
 
* [http://en.wikipedia.org/wiki/1949 1949] - 폰노이만이 에니악을 이용하여 파이를 소수점 2,037 자리까지 계산함
 
* [http://en.wikipedia.org/wiki/1950 1950] - Stanislaw Ulam and John von Neumann present [http://en.wikipedia.org/wiki/Cellular_automata cellular automata] dynamical systems,
 
* [http://en.wikipedia.org/wiki/1950 1950] - Stanislaw Ulam and John von Neumann present [http://en.wikipedia.org/wiki/Cellular_automata cellular automata] dynamical systems,
 +
* 1950 [[해밍코드(Hamming codes)]]
 +
* 1952 히그너에 의해 [[가우스의 class number one 문제]]의 증명이 얻어지나 옳은 것으로 인정받지 못함
 
* [http://en.wikipedia.org/wiki/1953 1953] - [http://en.wikipedia.org/wiki/Nicholas_Metropolis Nicholas Metropolis] introduces the idea of thermodynamic [http://en.wikipedia.org/wiki/Simulated_annealing simulated annealing] algorithms,
 
* [http://en.wikipedia.org/wiki/1953 1953] - [http://en.wikipedia.org/wiki/Nicholas_Metropolis Nicholas Metropolis] introduces the idea of thermodynamic [http://en.wikipedia.org/wiki/Simulated_annealing simulated annealing] algorithms,
 
* [http://en.wikipedia.org/wiki/1955 1955] - [http://en.wikipedia.org/wiki/H._S._M._Coxeter H. S. M. Coxeter] et al. publish the complete list of [http://en.wikipedia.org/wiki/Uniform_polyhedron uniform polyhedron],
 
* [http://en.wikipedia.org/wiki/1955 1955] - [http://en.wikipedia.org/wiki/H._S._M._Coxeter H. S. M. Coxeter] et al. publish the complete list of [http://en.wikipedia.org/wiki/Uniform_polyhedron uniform polyhedron],
181번째 줄: 189번째 줄:
 
* [http://en.wikipedia.org/wiki/1965 1965] - [http://en.wikipedia.org/wiki/James_Cooley James Cooley] and [http://en.wikipedia.org/wiki/John_Tukey John Tukey] present an influential [http://en.wikipedia.org/wiki/Fast_Fourier_Transform Fast Fourier Transform] algorithm,
 
* [http://en.wikipedia.org/wiki/1965 1965] - [http://en.wikipedia.org/wiki/James_Cooley James Cooley] and [http://en.wikipedia.org/wiki/John_Tukey John Tukey] present an influential [http://en.wikipedia.org/wiki/Fast_Fourier_Transform Fast Fourier Transform] algorithm,
 
* [http://en.wikipedia.org/wiki/1966 1966] - [http://en.wikipedia.org/w/index.php?title=E.J._Putzer&action=edit&redlink=1 E.J. Putzer] presents two methods for computing the [http://en.wikipedia.org/wiki/Matrix_exponential exponential of a matrix] in terms of a polynomial in that matrix,
 
* [http://en.wikipedia.org/wiki/1966 1966] - [http://en.wikipedia.org/w/index.php?title=E.J._Putzer&action=edit&redlink=1 E.J. Putzer] presents two methods for computing the [http://en.wikipedia.org/wiki/Matrix_exponential exponential of a matrix] in terms of a polynomial in that matrix,
* [http://en.wikipedia.org/wiki/1966 1966] - [http://en.wikipedia.org/wiki/Abraham_Robinson Abraham Robinson] presents [http://en.wikipedia.org/wiki/Non-standard_analysis Non-standard analysis]. [[베이커의 정리]].
+
* [http://en.wikipedia.org/wiki/1966 1966] - [http://en.wikipedia.org/wiki/Abraham_Robinson Abraham Robinson] presents [http://en.wikipedia.org/wiki/Non-standard_analysis Non-standard analysis].  
 +
* 1966-67년 앨런 베이커가 [[베이커의 정리]]를 증명함
 +
* 1966-67년 스타크와 베이커에 의해 [[가우스의 class number one 문제]] 증명함
 
* [http://en.wikipedia.org/wiki/1967 1967] - [http://en.wikipedia.org/wiki/Robert_Langlands Robert Langlands] formulates the influential [http://en.wikipedia.org/wiki/Langlands_program Langlands program] of conjectures relating number theory and representation theory,
 
* [http://en.wikipedia.org/wiki/1967 1967] - [http://en.wikipedia.org/wiki/Robert_Langlands Robert Langlands] formulates the influential [http://en.wikipedia.org/wiki/Langlands_program Langlands program] of conjectures relating number theory and representation theory,
 
* [http://en.wikipedia.org/wiki/1968 1968] - [http://en.wikipedia.org/wiki/Michael_Atiyah Michael Atiyah] and [http://en.wikipedia.org/wiki/Isadore_Singer Isadore Singer] prove the [http://en.wikipedia.org/wiki/Atiyah-Singer_index_theorem Atiyah-Singer index theorem] about the index of [http://en.wikipedia.org/wiki/Elliptic_operator elliptic operators],
 
* [http://en.wikipedia.org/wiki/1968 1968] - [http://en.wikipedia.org/wiki/Michael_Atiyah Michael Atiyah] and [http://en.wikipedia.org/wiki/Isadore_Singer Isadore Singer] prove the [http://en.wikipedia.org/wiki/Atiyah-Singer_index_theorem Atiyah-Singer index theorem] about the index of [http://en.wikipedia.org/wiki/Elliptic_operator elliptic operators],
187번째 줄: 197번째 줄:
 
* [http://en.wikipedia.org/wiki/1975 1975] - [http://en.wikipedia.org/wiki/Beno%C3%AEt_Mandelbrot Benoît Mandelbrot] publishes <em style="">Les objets fractals, forme, hasard et dimension</em>,
 
* [http://en.wikipedia.org/wiki/1975 1975] - [http://en.wikipedia.org/wiki/Beno%C3%AEt_Mandelbrot Benoît Mandelbrot] publishes <em style="">Les objets fractals, forme, hasard et dimension</em>,
 
* [http://en.wikipedia.org/wiki/1976 1976] - [http://en.wikipedia.org/wiki/Kenneth_Appel Kenneth Appel] and [http://en.wikipedia.org/wiki/Wolfgang_Haken Wolfgang Haken] use a computer to prove the [http://en.wikipedia.org/wiki/Four_color_theorem Four color theorem],
 
* [http://en.wikipedia.org/wiki/1976 1976] - [http://en.wikipedia.org/wiki/Kenneth_Appel Kenneth Appel] and [http://en.wikipedia.org/wiki/Wolfgang_Haken Wolfgang Haken] use a computer to prove the [http://en.wikipedia.org/wiki/Four_color_theorem Four color theorem],
* 1978년 Roger Apéry가 [[ζ(3)는 무리수이다(아페리의 정리)]] 를 증명
+
* 1978년 Roger Apéry가 [[ζ(3)는 무리수이다(아페리의 정리)]] 를 증명
 
* [http://en.wikipedia.org/wiki/1983 1983] - [http://en.wikipedia.org/wiki/Gerd_Faltings Gerd Faltings] proves the [http://en.wikipedia.org/wiki/Mordell_conjecture Mordell conjecture] and thereby shows that there are only finitely many whole number solutions for each exponent of Fermat's Last Theorem,
 
* [http://en.wikipedia.org/wiki/1983 1983] - [http://en.wikipedia.org/wiki/Gerd_Faltings Gerd Faltings] proves the [http://en.wikipedia.org/wiki/Mordell_conjecture Mordell conjecture] and thereby shows that there are only finitely many whole number solutions for each exponent of Fermat's Last Theorem,
 
* [http://en.wikipedia.org/wiki/1983 1983] - 유한단순군의 분류 완료
 
* [http://en.wikipedia.org/wiki/1983 1983] - 유한단순군의 분류 완료
198번째 줄: 208번째 줄:
 
* [http://en.wikipedia.org/wiki/2000 2000] - the [http://en.wikipedia.org/wiki/Clay_Mathematics_Institute Clay Mathematics Institute] proposes the seven [http://en.wikipedia.org/wiki/Millennium_Prize_Problems Millennium Prize Problems] of unsolved important classic mathematical questions.
 
* [http://en.wikipedia.org/wiki/2000 2000] - the [http://en.wikipedia.org/wiki/Clay_Mathematics_Institute Clay Mathematics Institute] proposes the seven [http://en.wikipedia.org/wiki/Millennium_Prize_Problems Millennium Prize Problems] of unsolved important classic mathematical questions.
  
 
+
  
 
+
  
 
==중요 수학 저술==
 
==중요 수학 저술==
 
+
* Lizhen Ji, [http://www.intlpress.com/site/pub/pages/books/items/00000417/index.html Great Mathematics Books of the Twentieth Century : A Personal Journey], 2014
 +
* [http://www.gutenberg.org/wiki/Mathematics_%28Bookshelf%29 Mathematics (Bookshelf), Project Gutenberg]
 
* [http://www.17centurymaths.com/ Some Mathematical Works of the 17th & 18th Centuries Translated mainly from Latin into English.]
 
* [http://www.17centurymaths.com/ Some Mathematical Works of the 17th & 18th Centuries Translated mainly from Latin into English.]
 
* http://en.wikipedia.org/wiki/List_of_important_publications_in_mathematics
 
* http://en.wikipedia.org/wiki/List_of_important_publications_in_mathematics
  
 
+
 +
 
 +
  
 
 
 
==기구의 설립==
 
==기구의 설립==
 
* [[계몽주의 시기 과학의 조직화와 제도화]]
 
* [[계몽주의 시기 과학의 조직화와 제도화]]
* 1660년 영국의 왕립 학회 (Royal Society) 설립
 
** http://en.wikipedia.org/wiki/Royal_Society
 
* 1666년 프랑스의 과학 아카데미(Académie des Sciences) 설립
 
** http://ko.wikipedia.org/wiki/%ED%94%84%EB%9E%91%EC%8A%A4_%EA%B3%BC%ED%95%99_%EC%95%84%EC%B9%B4%EB%8D%B0%EB%AF%B8
 
* 1700년 독일 the Prussian Academy of Sciences
 
** Gottfried Wilhelm Leibniz, after returning from France, persuaded King Frederick I
 
* 1724 러시아
 
** http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740014493_1974014493.pdf
 
** Tsar Peter I of Russian was building his new capital at St. Petersburg ...
 
** http://www.spbrc.nw.ru/en/about
 
  
 
==관련링크와 웹페이지==
 
==관련링크와 웹페이지==
233번째 줄: 235번째 줄:
 
* [http://turnbull.dcs.st-and.ac.uk/%7Ehistory/Indexes/Hist_Topics_alph.html History Topics: Alphabetical Index]
 
* [http://turnbull.dcs.st-and.ac.uk/%7Ehistory/Indexes/Hist_Topics_alph.html History Topics: Alphabetical Index]
  
 
+
  
 
==관련도서==
 
==관련도서==
  
 
* Cajori, History of Mathematical Notat
 
* Cajori, History of Mathematical Notat
*  도서내검색<br>
+
*  도서내검색
 
** [http://books.google.com/books?q=%EC%88%98%ED%95%99%EC%82%AC http://books.google.com/books?q=수학사]
 
** [http://books.google.com/books?q=%EC%88%98%ED%95%99%EC%82%AC http://books.google.com/books?q=수학사]
 
** http://book.daum.net/search/contentSearch.do?query=
 
** http://book.daum.net/search/contentSearch.do?query=
*  도서검색<br>
+
*  도서검색
 
** http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
** http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
** [http://book.daum.net/search/mainSearch.do?query=%EC%88%98%ED%95%99%EC%82%AC http://book.daum.net/search/mainSearch.do?query=수학사]
 
** [http://book.daum.net/search/mainSearch.do?query=%EC%88%98%ED%95%99%EC%82%AC http://book.daum.net/search/mainSearch.do?query=수학사]
  
 
+
  
 
==사전형태의 자료==
 
==사전형태의 자료==
  
 
* http://en.wikipedia.org/wiki/Timeline_of_mathematics
 
* http://en.wikipedia.org/wiki/Timeline_of_mathematics
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q737279 Q737279]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'timeline'}, {'LOWER': 'of'}, {'LEMMA': 'mathematics'}]

2021년 2월 17일 (수) 04:49 기준 최신판

개요


15세기

16세기

  • 1545년 카르다노가 'Ars Magna' 를 출판



17세기


18세기



19세기



20세기



중요 수학 저술



기구의 설립

관련링크와 웹페이지


관련도서


사전형태의 자료

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'timeline'}, {'LOWER': 'of'}, {'LEMMA': 'mathematics'}]